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Editor's Foreword

Perseus Publishing's Frontiers in Physics series has, since 1961,
made it possible for leading physicists to communicate in
coherent fashion their views of recent developments in the most
exciting and active fields of physics—without having to devote
the time and energy required to prepare a formal review or
monograph. Indeed, throughout its nearly forty year existence,
the series has emphasized informality in both style and content,
as well as pedagogical clarity. Over time, it was expected that
these informal accounts would be replaced by more formal
counterparts—textbooks or monographs—as the cutting-edge
topics they treated gradually became integrated into the body of
physics knowledge and reader interest dwindled. However, this
has not proven to be the case for a number of the volumes in the
series: Many works have remained in print on an on-demand
basis, while others have such intrinsic value that the physics
community has urged us to extend their life span.

The Advanced Book Classics series has been designed to meet this
demand. It will keep in print those volumes in Frontiers in Physics
that continue to provide a unique account of a topic of lasting
interest. And through a sizable printing, these classics will be
made available at a comparatively modest cost to the reader.

The lectures contained in the late Shang Ma's lecture-note
volume, Modern Theory of Critical Phenomena, describe the
remarkable flowering of this field in the 1960's and early 1970's.
Ma's deep understanding of the field, combined with his lucent
writing and attention to pedagogical detail, made his book an
instant classic, in great demand by graduate students and
experienced researchers alike. This has continued to be the case
for the last twenty-five years. I am accordingly very pleased that
their publication in the Advanced Book Classics series will continue
to make the lectures readily available for future generations of
scientists interested in understanding and extending our
knowledge of critical phenomena.

Dawd Pines
Cambridge, England
May, 2000
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PREFACE

This book is an introduction to the modern theory

of critical phenomena. Research in this field has been

extensive over the past few years and the theory has

undergone rapid development following the pioneering work

of Wilson (1971) on the renormalization group (abbreviated

as RG) approach to scaling.

This book is intended for use by the graduate stu-

dent in physical sciences or engineering who has no previ-

ous knowledge of critical phenomena. Nor does the reader

need any background in group theory or any advanced

mathematics. Elementary statistical mechanics is the

only prerequisite.

The first six chapters can be read without going

xvii



xviii

through any tedious calculation and can be used as an intro-

ductory text. They cover the outstanding features of criti-

cal phenomena and basic ideas of the S.G, The rest of the

book treats more advanced topics, and can be used in an

advanced course in statistical physics,

I want to stress the distinction between the following

two approaches to complex physical problems:

(i) Direct solution approach. This means calcula-

tion of physical quantities of interest in terms of parame-

ters given in the particular model — in other words, solving

the model. The calculation may be done analytically or

numerically, exactly or approximately,

(ii) Exploiting symmetries. This approach does not

attempt to solve the model. It considers how parameters

in the model change under certain symmetry transforma-

tions. From various symmetry properties, one deduces

some characteristics of physical quantities. These charac-

teristics are generally independent of the quantitative values

of the parameters. By symmetry transformations ! mean

those which are relatively simple, like reflection, transla-

tion, or rotation. I would not call a complete solution of a

PREFACE



PREFACE

complicated model a symmetry property of that model.

Approach (ii) is not a substitute for approach (i).

Experience tells us that one should try (ii) as far as one

can before attempting (i), since (i) is often, a very difficult

task. Results of (ii) may simplify this task greatly. Out-

standing examples of this may be found in the study of

rotations in atomic physics, translations in solid state

physics, and isotopic spin rotations in nuclear physics.

A great deal can be learned from (ii) even without attempt-

ing (i),

To a large extent, the traditional effort in the theory

of critical phenomena has taken approach (i). The mean

field theory is an example of an approximate solution.

Qnsager's theory of the Ising model is an example of an

exact solution. There are many numerical solutions of

various models. While the mean field theory often seems

too crude, the exact solutions are too complicated. A

peculiar feature of critical phenomena is that there is very

little one can do to improve the mean field theory substan-

tially without solving the problem exactly. This makes the

theory of critical phenomena a very difficult field. Many

xix
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of its contributors have been mathematical talents.

The new renormaiization group theory takes

approach, (ii). The renormalization group is a set of sym-

metry transformations. It tells a great deal when applied

to critical phenomena although it is not a substitute for a

complete solution. I would say that its role in critical

phenomena is as important as the role of the rotation group

in atomic physics. Although it is not as simply defined as

rotations, it is not too complicated either. The fact that it

is accessible to mathematically less sophisticated people

like myself is an important reason for the recent rapid ad-

vances in critical phenomena. The field is now less exclu-

sive, so that many can now understand and contribute to it.

The purpose of this volume is to introduce this new

approach, beginning at a very elementary level, and to

present a few selected topics in some detail. Some techni-

cal points which are often taken for granted in the literature

are elaborated. This volume is not intended to be a review

of the vast new field, but rather to serve as a text for those

who want to learn the basic material and to equip them-

selves for more advanced readings and contributions.

xx
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In spite.of its great success, the new renormaliza-

tion group approach to the theory of critical phenomena

still lacks a firm mathematical foundation. Many conclu-

sions still remain tentative and much has not been under-

stood. It is very important to distinguish between plausible

hypotheses and established facts. Often the suspicious

beginner sees this distinction very clearly. However,

after he enters the field, he is overwhelmed by jargon and

blinded by the successes reported in the literature. In this

volume the reader will encounter frequent emphasis upon

ambiguities and uncertainties. These emphases must not

be interpreted as discouraging notes, but are there simply

to remind the reader of some of the questions which need

to be resolved and must not be ignored.

The book is roughly divided into two parts. The

first part is devoted to the elaboration of basic ideas follow-

ing a brief survey of some observed critical phenomena.

The second part gives selected applications and discussion

of some more technical points.

Very little will be said about the vast literature

concerned with approach (i) mentioned above, since there

xxio
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are already many books and reviews available and our main

concern is approach (ii) via the RG. However, the mean

field theory and the closely related Gaussian approximation

will be discussed in detail (Chapter III) because they are

very simple and illustrative.

Kadanoff's idea of block construction (1966) will be

introduced at an early stage (Chapter II), as it is an essen-

tial ingredient of RG theory. The scaling hypothesis will

be introduced as a purely phenomenological hypothesis

(Chapter IV). The idea of scale transformations is also

fundamental to the RG. The definitions of the RG, the

idea of fixed points, and connection to critical exponent

will be examined in Chapters V and VI.

The basic abstract ideas of the RG are easy to

understand, but to carry out these ideas and verify them

explicitly turns out to be difficult. Even the simplest

examples of the realization of the RG are rather compli-

cated. Several examples, including Wilson's approximate

recursion formula, the case of small e, and some two-

dimensional numerical calculations, will be presented,

and some fundamental difficulties and uncertainties
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discussed (Chapters VII, VIII).

The very successful technique of the e expansion

and the 1/n expansion will be developed and illustrated

with simple calculations. The basic assumptions behind

these expansions are emphasized (Chapter IX). The effect

of impurities on critical behaviors will be discussed at

length, followed by a study of the self-avoiding random

walk problem (Chapter X),

The material in the first ten chapters concerns

static (time-averaged) critical phenomena. The remaining

four chapters will be devoted to dynamic (time-varying)

critical phenomena. Mode-mode coupling, relaxation

times, the generalization of the RG ideas to dynamics, etc.

will be explained (Chapters XI, XII). A few simple dynamic

models are then discussed as illustrations of the application

of the EG ideas (Chapter XIII). Finally the perturbation

expansion in dynamics is developed and some technical

points are elaborated (Chapter XIV).

The material presented in this volume covers only

a small fraction of the new developments in critical phe-

nomena over the past four years. Instead of briefly

xxiii
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discussing many topics, I have chosen to discuss a few

topics in some depth. Since I came to the study of critical

phenomena and the EG only quite recently, I remember

well the questions a beginner asks, and have tried through-

out this volume to bring up such questions and to provide

answers to them. Many of the questions brought up, how-

ever, still have no answer.

My knowledge in this field owes much to my col-

laboration and conversations with several colleagues,

A. Aharony, M. E. Fisher, B. I. Halperin, P. C.

Hohenberg, Y. Imry, T. C. Lwbensky, G. F. Mazenko,

M, Nauenberg, B. G, Nickel, P. Pfeuty, J, C. Wheeler,

K. G. Wilson, and Y. Yang, I am very grateful to

K. Friedman, H. Gould, G. F. Mazenko, W. L. McMillan,

J. Rehr, A. Aharony, K. Elinger and J, C. Wheeler for

their valuable comments on the manuscript.

Special thanks are due to D. Pines, without whose

constant encouragement and fruitful suggestions this book

would not have been written.

The support of an Alfred P. Sloan Foundation

Fellowship and a grant from the National Science
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Foundation helped to make this book possible.

Finally, it is my great pleasure to acknowledge the

skillful assistance of Ms. Annetta WMteman in typing this

book,

Shang-keng Ma
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I. INTRODUCTION

SUMMARY

We review briefly representative empirical data of

critical phenomena. Definitions of the critical point, order

parameter, critical exponents, etc. are introduced. Quali-

tative features of critical behavior are summarized. A

discussion of mean field theory is included.

1. CRITICAL, POINTS AND ORDER PARAMETERS

In describing the macroscopic properties of a piece

of material, we are concerned with quantities such as total

mass, total energy, total magnetic moment, and other

totals of the constituent's particles. For homogeneous

1
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materials, it is convenient to divide these quantities by the

volume V of the material to obtain the mass density, the

energy density, the magnetization, etc., which we shall

subsequently refer to as mechanical variables. There are

other examples of important mechanical variables which

are less familiar and not so easily defined or visualized as

those just mentioned. Some important examples are quan-

tum amplitudes of Bose fluids, staggered magnetization of

antiferromagnets, Fourier components of atom density in

a crystal, etc.

There are also quantities such as the applied pres-

sure p, the temperature T, and the magnetic field h.

These are "applied fields. " They characterize the environ-

ment, or the "reservoir" with which the material is in con-

tact. In most cases, the values of mechanical variables are

uniquely determined if the value of external fields are

specified.

There are some remarkable cases where a certain

mechanical variable is not uniquely determined, but has

choices, for special values of applied fields. For example,

at T=373°K and p = l atm, the density P of HO is not

2



CRITICAL POINTS  3

fixed but has the choice of a high value (water) or low value

(steam). This happens whenever (T, p) is on a curve as

shown in Figure 1. la. This curve terminates at the point

Figure 1. 1. (a) The liquid-gas critical point of t^O:
Tc =64?°K, Pc = 218 atra. (b) The ferro-
magnetic point of Fe: Tc = 1044 °K, hc = 0.



4  INTRODUCTION

(T , p ). TMs point is a li_qu id - g as c ri tic at point, above

which the choice ceases.

Another example is the ferromagnetic state of mate-

rials like iron and nickel. The magnetization vector m is

not fixed when the applied field h is zero. It can point in

different directions. TMs free choice of directions ceases

when T > T , the Curie temperature. The line oc in

Figure 1. Ib is analogous to the curve in Figure 1. la. The

point (T = T , h = 0) is a ferromagnetic critical point. For

T > I , the material becomes paramagnetic and m = 0

when h-0.

Phenomena observed near a critical point are re-

ferred to as critical phenomena, A mechanical variable

which is undetermined, namely the density P in the liquid -

gas case and the magnetization m in the ferromagnetic

*
case, will be referred to as the order parameter.

Besides the two given above, there are many other

kinds of critical points and associated order parameters.

This is not the most precise definition, since there may be
more than one undetermined mechanical variable. Further
criteria may be needed to narrow down the choice of an
order parameter.
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Interesting examples are the superfluid critical point (the

X point) of liquid; helium, and the superconductivity critical

points of many metals and alloys. Their associated order

parameters are the quantum amplitude of helium atoms and

that of electron pairs, respectively. In either case, the

order parameter is a complex number. More examples are

given In Table 1.1. It turns out that critical phenomena

observed in many different materials near various kinds of

critical points have quite a few features in common. These

common features will be the subject matter of all subsequent

discussions. However, to discuss the subject in very gen-

eral terms would not be the most instructive. We shall in-

stead discuss mainly the ferromagnetic critical point.

Generalization to other critical points will be made as we

proceed. The ferromagnetic critical phenomena are most

easily visualizable and suitable for introductory discussion.

2. QUALITATIVE PICTURE

Ferromagnetism has long been studied extensively.

There is a vast literature on this subject. Here we shall be

content with the following qualitative information;
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Table 1. I

Examples of critical points and their
order parameters

Critical
Point

Liquid-gas

Ferro-
magnetic

Antilerro-
magnetic

X-line

Super-
conductivity

Binary fluid
mixture

Binary alloy

Ferroelectric

Order
Parameter

Density

Magnetization

Sublattice
mag ne ti zati on

4He -amplitude

Electron pair
amplitude

Concentration
of one fluid

Density of one
kind on a sub-
iattic e

Polarization

Example

H20

Fe

FeF_£t

4
He*

Pb

CCVC7 

F 14

Cu-Zn

Triglycine
sulfate

T C ( ° K )

647.05^3)

1044. 0(l)

78.26(2)

(4)
1.8-2. V '

7.19(5)

301.78(6)

?39(7)

322.5(8)

6

(1>Kadanoff et al. (1967).
Ci\1 Ahlera et al. (1974).

(%.M.H. Levelt Sengers (1974).
<4)G, Ahlers (1973).

^5)P. Heller (1967).
(6!P, Heller (1967).
n\1 'J. Als-Nielsen and O. Dietrich (1966).
(8)J. A. Gonzalo (1966).
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(a) The source of magnetization is the spin of elec-

trons in the incomplete atomic shells, typically the d and

f shells of transition metal atoms like Fe, Ni, and Co,

Each electron spin carries one Bohr-magneton of magnetic

moment. Orbital angular momenta do not contribute.

(b) The electron spins will have lower energy when

they are parallel because of the "exchange effect. " This

effect is a combined result of Coulomb repulsion between

electrons and the Pauli exclusion principle. The latter

keeps electrons with parallel spins apart and thereby re-

duces the Coulomb energy.

There are many other complicated effects due to

atomic and crystal structures of the materials. For

example, the spins may prefer to line up along a particular

crystalline axis, or in a particular plane. These are,

respectively, the "uniaxial" or "planar" ferromagnetics.

If there is no preferred direction, then they are. "isotropic."

In any case, the energy is lower when more spins agree,

or line up, in ferromagnetic materials.

At zero temperature, the system is in a lowest

energy state and. all spins point in the same direction, but
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this direction is not unique. There are different choices.

In the isotropic case, for example, any direction is possible

as long as all spins point in the same direction. There is

thus a finite magnetization. The material is ferromagnetic.

As the temperature T is increased from zero, thermal

noise randomizes the spins. If the temperature is not too

high, there will still be a net fraction of spins pointing in

the same direction at all times. As the temperature is in-

creased, this fraction is reduced. When T reaches T ,

the critical temperature, and beyond, this fraction vanishes.

The material becomes paramagnetic. Transitions like this

are often called "second order" for reasons which are not

relevant to our study here. For T near T , the tendency
of order (lining up spins by losing energy) and the tendency

of disorder (randomizing spins by thermal noise) nearly

balance each other. When T < T , order wins and thec

ferromagnetic state is often called the "ordered phase, "

while for T> T , disorder wins, hence the paramagnetic

state is called the "disordered phase. "

It is quite plausible that, for T just above T ,

there must be large regions (much larger than crystal unit
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cells) in which a net fraction of spins are lined up. This is

because the ordering tendency can almost, but not quite,

succeed. It achieves order in big patches but cannot make

a finite fraction of all patches agree. For T just below T ,
c

the ordering barely makes it. Most patches, except a small,

but finite, fraction have spins pointing in random directions.

When the size of the patches becomes large, the

time required for ordering or disordering becomes long.

The exchange effect, which is the ordering mechanism,

operates on neighboring spins. The thermal noise turns

spins randomly, without coherence over space or time.

For these short range effects to create, destroy, or turn

around large patches of lined up spins would take a long

time. The "relaxation time, "i.e., the time needed to

approach thermal equilibrium after a disturbance, is there-

fore very long when T is near T . This in fact makes

experimental work difficult. The experimenters must wait

longer.

The qualitative picture described above is very

sketchy. It may not be plausible at all to a reader who has

not been exposed to this subject. The available
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experimental and theoretical data seem to indicate that

many of the peculiar features oi critical phenomena are

manifestations of the large sizes of spin patches and long

relaxation times.

Customarily, critical phenomena are classified into

two categories, static and dynamic. Static phenomena con-

cern equilibrium properties such as magnetization, suscepti-

bility, specific heat, the probability distribution of spin con-

figurations, and the average size of the spin patches. Dy-

namic phenomena concern time dependent phenomena, such

as relaxation times, heat diffusion, and spin wave propaga-

tion. Up "titil now static phenomena have been much better

understood than dynamic phenomena.

We shall study statics first and devote most of our

space to it. Dynamics will be discussed later. We need to

know a great deal about static phenomena in order to study

the dynamics.

3. THERMODYNAMIC PROPERTIES AND EXPONENTS

Let us review briefly some observations of static

phenomena near ferromagnetic critical points.
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(a) Order parameter m as a fanetion of T, the
exponent P

When the external field h vanishes, the magnetiza-

tion m below T is a decreasing function of T and van-

ishes at T . (See Figure 1.2. ) For T very close to T ,

the power law behavior

is a common feature, where p is called a critica 1 ̂ expo-

nent. The observed values of p are shown in Table I. 2

Figure 1.2. Magnetization vs temperature of single crystal
YFeO3 for T very close to Tc . A small field
h is applied. Curves a, b, c are taken at
h = 38 Oe, 210 Oe and 460 Oe, respectively.
The broken line is the extrapolation to h=0 .
(Data taken from G. Gorodebsky et al. (1966)
Fig. 1, )



Exponents of ferromagnetic critical points

Material

Fe

Hi

EuO

YFe03

Gd

Symmetry

Isotropic

Isotropic

Isotropic

Uniaxial

Anisotropic

Tc(°KJ

1044, 0W

631.58(1)

69.33(1>

643(21

292.5(2)

a, a'

a = a' = -0. 120

iO.O!*11

a = a' = -0. 10

*0,03(2)

a = a'= -0.09

±0.01<1J

p

0. 34

*0.02(2)

0. 33

*0.03(2)

0. 354

0.005(2)

Y , Y '

Y = 1.333

*0.015>( 2

Y = 1. 32

*O.OE(2 )

Y= 1. 33

0.04W

Y ' = 0.7

± 0. 1

Y«1.33U)

6

4.2

*0,1
( 2 )

4.0

iO.!*21

T!

0, 07

*0.07«S

(1>
Lederman et al. (1974).

(2)
Kadanoff et al. (1967).

Table 1.2
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for several materials. The exponent 0 does not appear to

be an integer.

(b) Order parameter as a function of h at T
the exponent 6

Figure 1. 3 shows that m is not a smooth function

of the external field h when T = T . One observes, for

Figure 1. 3. Magnetization vs applied field (corrected for
demagnetization) at T very near Tc

(?a 630°K). The curves a, b, c are taken
respectively at T = 6Z7.56°, 6Z9.430. 631.30s

(Taken from J. S. Kouvel and M. E. Fisher
(1964), Fig. 1.)
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where 5 is also a critical exponent. Observed values are

listed in Table 1. 2.

( c ) The magne tic  T susc_e_ptibility X = Oni/3h) j>, for
h = p as a function of _T,_Jhe exponent Y

As T approaches T f \ is seen to diverge, as
C

shown in Figure 1.4. The divergence is characterized by

the exponents y an^. y :

Figure 1.4. Temperature dependence of the magnetic sus-
ceptibiEty of nickel. (Taken from S. Arajs
(1965), Fig. 3.)

very small h
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Data are consistent with y = Y ' - The proportionality con-

stants in the two cases are not the same. Some measured

values are listed in Table 1. 2.

(d) Specific heat and the exponent a

The specific heat C at h = 0 is observed to have a

singularity at T as Figure 1,5 shows. This singularity

is characterized by the exponents a, a':

Figure 1. 5. Specific heat of iron vs temperature. (Taken
from Ledeman et al. (1974), Fig, 2. )
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The observed a and a' are also listed in Table 1.2. The

proportionality constants in the two cases are different.

One also observes that a - a' within experimental error.

4. FLUCTUATIONS OF THE ORDER PARAMETER,
SCATTERING EXPERIMENTS, THE EXPONENT r\

If we probe into the details over a scale small com-

pared to the size of the whole material, we see the varia-

tion of electron spins as a function of position and time. If

we take a "snapshot, " we see a spin configuration 0(x).

The quantity 0(x) may be defined as the total spin in a

small volume around the point x divided by that small

volume, i.e., a "local spin density" or "local order

parameter. " (The choice of the size of that small volume

is an important subject and will be discussed in chapter II. )

The spin configuration changes as a result of thermal agita-

tion. At thermal equilibrium the spin configuration follows

a probability distribution dictated by the laws of statistical
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mechanics.

The spin configuration can be probed by scattering

experiments, especially neutron scattering. In other words,

we can take a snapshot by shining on the material a burst of

neutrons. The neutrons are scattered via the interaction

between neutron and electron magnetic moments. This

interaction is weak and the material is almost transparent

to neutrons. The potential felt by a neutron is proportional

to the electron spin density O(x), The scattering rate, or

cross section, F . for neutrons of initial incoming momen-

tum p, and final outgoing momentum p is proportional

to the matrix element of O(x) between these states squared:

in the Born approximation. The notation { ,.. } indicates

statistical averaging over all possible spin configurations,

Let us define the Fourier components CJ, of the

spin configuration O(x) as
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Here V is the volume of the material. We imagine that

-1/2 ik•xthe material is of cubic shape and plane waves V e

form a complete set of orthogonal functions. Each plane

wave will be called a mode. The spin configuration is then

describable as a superposition of modes; a, is the ampli-}£.

tude of the mode k.

Thus (1.5) says that

where k = p -p, is the momentum transfer in the neutron

scattering process.

The cross section for k~»G (forward scattering) is

observed to diverge as T -» T . It is found that, for very

small k,

where t| is still another critical exponent. (See Figure 1. 6

and Table 1. 2. )

We pause to introduce more terminology. We define

G(k) as
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Figure 1. 6. Neutron scattering intensity vs scattering
angle (which is proportional to the momentum
transfer) in Fe at T slightly above TC .
(Taken from Passell et al. (1965), Fig. 9 . )

The average ( o) is the magnetization, which is nonzero if

T < T , or h ^ 0. 0{x) - {0} is thus the deviation from

average or the spin fluctuation. The ( . . . ) in (1. 10) is

often called the correlation function of spin fluctuations.

Thus G(k) is simply the Fourier transform of this corre-

lation function. We shall also call G(k) the correlation

function. It will appear very often in our discussions.
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Since (o) is independent of x, the subtraction of ( C J )

makes no difference except at k = 0.

By the definition (1.6), we have

as long as k is not identically zero. We have assumed

that the volume V is very large and (0(x.) o(x_)) depends

only on x = x. - x . Thus the neutron scattering experi-
i Ct

meats measure the correlation function.

The cross section and hence G(k), diverges as

k -* 0 and T -» T . What does that imply? In the limit

k-0, (1. 10) is

Since each electron carries one spin, 0{x) is bounded by

the electron density and cannot diverge. The cause of the

divergence of G(0) is that both a (x ) - ( a> and o ( 0 ) - ( a >

remain in the same direction over a very large region so

that the integral (1. 12) is large. Another way of saying

this is that spin fluctuations are correlated over a long
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range. As T -*• T , the range becomes infinite. This

observation supports the picture discussed earlier of large

patches within each of which a net fraction of spins line up.

The average size of the patches becomes very large when

T is close to Tc .

An important identity relates the susceptibility X

to the zero k limit of the correlation function (1. 12), It is

Thus the susceptibility can also be deduced from neutron

scattering data.

5. OBSERVATIONS ON OTHER KINDS OF CRITICAL
POINTS

A remarkable fact of nature is that the kind of singu-

lar behavior found in ferrornagnets also appears at other

types of critical points. The definitions of critical expo-

nents given above can be generalized to include many other

types of critical points in a natural way as illustrated below.

(a) Liquid-gas critical points

Let p denote the density at the critical point (see

Figure 1. la), and define p - p as the order parameter.
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Along the curve in Figure 1. la, the value of p - p has the

choices P _ -P or p _ - p . Observations show that forL> c G c

very small T - T

The two proportionality constants are generally the same.

We use the same symbol 3 since (1. 14) is analogous to

(1. 1). The observed values of (3 for some liquid-gas

critical points are listed in Table 1. 3.

If p - 0 is measured along a line through the criti-

cal point at T = T , one finds

The symbol 6 is used because (1. 15) is analogous to (1, Z).

Some measured, values are in Table 1. 3.

The compressibility K = @p/8p) plays the role of

the susceptibility. It is found to diverge as T approaches

T . Again the symbol y *s used to characterize the

divergence (analogous to (1. 3)}»

c

c

T

c
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(See Table 1.3.)

The specific heat at constant density C is found

to diverge also at liquid-gas critical points with exponents

*a and a given in Table I, 3.

The fluctuation of the density can be measured by

light scattering experiments like the measurements of spin

fluctuations in magnetic systems sketched before. If the

fluid atoms carry no magnetic moments, then the density

fluctuation can be probed by neutron scattering. The poten-

tial seen by a neutron is proportional to the density of

atomic nuclei. The exponent T) can be introduced to char-

acterize the observed divergence of the scattering cross

section at T as the momentum transfer k approaches

zero, in analogy to Eq. (1.9). (See Table 1. 3. )

So far experimental data on liquid-gas critical

*
The specific heat at constant pressure Cp at a liquid-gas

critical point diverges like the compressibility K , i.e. ,

V

c



Critical
Points

Antiferro-
magjietic

Liquid -gas

Material

CoClE-6H2O

FeF,

RbMnF,

co2

Xe

H*3

He4

Uniasdal

Uniaxial

Isot3ropic

n = 1

TCCK»

2.29<4)

78,26*3)

83. 05<*'

304. 16i5'

289. 74*5*

3.3105<8>

5. 1885(5)

a, a'

a < O . H M >

a' *; 0. 19<4>

a = o' = 0. 112
+ 0. 044^3!

a = a ' = -0. 139
+ o,oo?(i)

a~ 1/tW

a = a' = 0. 08
* 0. 02*6'

o«;o .3 < 4 '

a '<0.2«4 '

0 = 0. 12?(7!

o.' = 0. 159

P

O.Z3
* 0. 02(4)

0.316
* 0. 008!2)

0.3447
± 0. 000?!b'

0.344
± 0. 003^5 >

0.361
± 0. 001 (5'

0.3554
± 0. 0028*5*

Y , V '

Y = 1.397
± 0.034(2)

Y = y ' = 1.2°
* 0.02<5)

Y = v ' = I • 203
± 0. 002

Y = Y'= 1.15
* 0.03<5 '

Y = y ' s I- 17
± o,ooo§<5)

6

4.2W)

4.4
±0 ,4< 4 »

1

0.067
± 0.0l(2)

Exponents for various critical points

Table 1.3



Y

Binary
mixture

Binary
alloy

Ferro-
electric

He4

CCi4-C7F14

Co-Zn

Triglycine
suifaSe

a ~ I

n = 1

n = 1

1.8-Z.1(9)

301.7«<l°>

739(n)

322.6<12>

-0.04 <

a = a.'< Q

0.335
± o.ozdO)

0.305
± 0. 005*11'

Y - 1.2« 1 0>

Y = 1.25
± O . O Z U D

Y = Y ' = 1. 00
* 0. 05<12 '

- 4UO)

'Lederman et al, (197

'Corliss et al. (1969)
<3>

Ahlers et al. (1974). (9>G. Ahlers (1973).

Kadanoif «t al. (1967). P. Heller (1973).

(5
'j. M. H. Levelt Sengers (1974). <11>J. Als -Nielsen and O. Dietrich (1966).

*6*C. Edwards et al. (1968). !1Z)J. A. Gonzalo (1966).

(7)

(8)

(9)

(10)

(11)

(12)

M. R. Moldorev (1969).

(8)B. Wallace and H. Meyer (1970).

4
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points have been more abundant than those on other kinds of

critical points.

(b) Antiferromagnetic critical points

In an antiferromagnetic crystal (imagine a cubic

crystal for simplicity), the interaction between electron

spins is such that spins in nearest neighboring cells tend to

point in opposite directions. As a result spin direction be-

comes ordered and alternates from one eell to the next at

low temperatures. We can imagine two interpenetrating

sublattices. There is an average magnetization m on one

sublattice and -m on the other. There is a critical tem-

perature T (called the Neel temperature) above which m

vanishes, m is usually referred to as the staggered mag-

netization and plays the role of the order parameter. There

are uniaxial antiferromagnets with m along or opposite to

one special axis, planar antiferromagnets with m in any

direction in a plane, and isotropic antiferromagnets with

m in any direction. m can be measured by neutron scat-

tering. The alternating spin directions give rise to a large

scattering cross section proportional to (mV) for a mo-

mentum transfer k 4- K. with
o

c

2
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and K being any vector in the reciprocal lattice. Here a

is the lattice constant, and V is the volume of the crystal

•fs "?
probed by the neutron beam. This (mV) dependence of

the cross section is evident in view of (1. 5) and the fact

that the spin density is periodic with period 2a. Note that

if the momentum transfer vector k is not equal to k + K

given above, then the cro'ss section would be proportional

2
to V, aot V .

The measured m for small T - T follows the
c

power law

where the symbol P is used again as in (1» 14) and (1. 1).

Some observed values are in Table 1. 3.

The quantity that is analogous to h would be an ex-

ternal "staggered" magnetic field whose direction alternates

from one cell to the next. Such a field is not experimentally

We assume that the whole volume of the crystal is tra-
versed by the beam.

o
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accessible. Consequently, the analog of 6 in (1.2) and

that of Y in (1, 3) are not measurable directly.

We can define the local staggered magnetization

m(x) through

where the a, are the Fourier components of the electron&

spin configuration. The neutron scattering cross section

of momentum transfer k + k (with k ^ 0) thus measures

the correlation function

apart from a factor proportional to V {not V }. In the

limit V -* °° one finds the behavior

at T like the ferromagnetic and liquid-gas cases. In the

limit k -» 0 for small but nonzero T - T we can use the
c

exponent Y to specify the behavior of G:

o

2

c
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The use of y follows from an identity similar to (1. 13)

which allows us to define the susceptibility as G(0)T for

the staggered magnetization even though the staggered field

is not realizable by experiments. Some observed values of

exponents are given in Table 1. 3. It should be clear by now

that exponents can be defined in a natural way as soon as the

order parameter is defined,

(c) Binary alloy critical points

Ordered binary alloys are very closely analogous to

antiferrornagnets. A classic example is the 3 -brass, a

cubic crystal made of 50% Zn and 50% Cu. At low tempera-

tures, the nearest neighbors of Zn atoms are predominantly

Cu atoms, making a configuration of alternating Zn and Cu

atoms. Again we can imagine two interpenetrating sublat-

tices. Let Ap = (density of Cu) - (density of Zn) on one

sublattice. Then Ap has the opposite value on the other

sublattice. The value of Ap has two choices of sign. Its

magnitude decreases as T increases and vanishes if T
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exceeds the critical temperature. Thus A p is naturally

identified as the order parameter and the definitions of

exponents follow. (See Table 1,3.)

4(d) The \ point of liquid He and critical points
of superconductivity

4 4Liquid He is a system of Bosons {He atoms) which

is found to remain a liquid down to nearly 0°K at normal

pressure. In quantum mechanics it can be described by a

complex Bose field. The field amplitude f (x) is analogous

to the spin density CJ(x) in ferromagnets, the local density

p (x) in a liquid or gas, and local staggered magnetization

tn(x) in an antiferromagnet. Although f (x ) is not directly

measurable, many theoretical arguments and indirect obser-

4
vations indicate that the X point of liquid He is a critical

point 'with

as the order parameter. Below the X point, i.e., for

T < T (T a*. 2"K and varies slightly with pressure), ?

assumes a nonzero magnitude but its direction in the com-

plex plane is not fixed. This behavior is analogous to planar

ferromagnets and planar antiferromagnets. Having identified

c c
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the order parameter, we can proceed to define the expo-

nents as we did before. However, since f is not directly

measurable, since the external field analogous to h does

not exist in the laboratory, and since there is no scattering

experiment measuring the correlation of f , the exponents

P » Y, & » TI cannot be observed. Of course, the specific

heat is measurable. A logarithmic divergence -In | T - T |

has been found. Such a divergence can be regarded as a

very small a but a large coefficient proportional to I/a:

Various properties of superconductors are attributed

to the nonzero value of an order parameter A , which plays

— . 4
the same role as the f in liquid He :

Here A(x) is the complex field amplitude of "Cooper pair

Bosons. " Each Boson is now a pair of electrons with nearly

opposite momenta and opposite spins. The order parameter

A vanishes when T ^ T and the superconductivity ceases.

Again 3, Y. 6, *) a*e not measurable directly. The

c

c
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Figure 1.7. Specific heat of a superconductor near T

6. SUMMARY OF QUALITATIVE FEATURES OF STATIC
PHENOMENA

The most outstanding features revealed by the data

reviewed above are (in the language of ferromagnetism):

specific heat of various superconductors shows a discon-

tinuity at T (see Figure 1. 7). This is not a power law

behavior as observed at other kinds of critical points.

We shall argue later that the experimentally attained values

of T - T have not been small enough for the power law

divergence to show up (see Sec. III. 6 ).

c

c

c
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(a) Non-uniqueness of the order parameter
below Tc

There are different directions which the magnetiza-

tion m can assume when h = 0, T < T . For T > T ,
c c

m vanishes,

(b) Singular behavior

Many thermodynamie quantities are singular func-

tions of T - T and h. The correlation function at thec

critical point is a singular function of k.

(c) Universality of critical exponents

The singularities are characterized by nonintegral

powers of J T - T I , k, or h. These powers, the critical
C

exponents, are universaj in the sense that they are the

same for many different materials. The symmetry prop-

erties of materials do seem to make some difference. The

exponents for uniaxial ferromagnets differ from those for

isotropic ferromagnets, for example. There are also

other mechanisms such as long range forces which affect

the exponents such as the dipolar interaction in some

ferromagnets.

in the above brief review of data, we have not

touched upon any details of the various techniques of
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measurement. These techniques are by themselves inter-

esting and important, bufc an adequate review would be be-

yond the scope of this book.

To the terms specified by the exponents introduced

above, there are correction terms (higher powers of

T- T j , h, and. k) which are negligible only if |T- T j ,

h» and k are sufficiently small. How small is "suffi-

ciently small? " This is a very difficult question, whose

answer depends on the details of each material under

observation. It must be answered in order to interpret

experimental data properly. We shall examine this question

later on. (See Sec. VI. 4. )

7. MEAN FIELD THEORY

The outstanding features of the empirical data have

been reviewed. Now we need a theory for a qualitative

understanding of the major mechanisms behind these fea-

tures, and for a basis of quantitative calculations, A com-

pletely satisfactory theory has not been established, but

there has been considerable progress toward its establish-

ment. Starting in the next chapter, we shall carefully

c c
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explore theoretical advances in, detail. We devote the re-

mainder of this chapter to a brief review of the mean field

theory, which is the simplest and oldest theoretical attempt.

Unsatisfactory in many respects, it still captures a few

important features of critical phenomena. Its simplicity

makes it a very valuable tool for a rough analysis.

Consider a ferromagnetic model. Each electron

spin is in a local magnetic field h' , which is the external

field h (which we assume to be very small), plus the field

provided by the neighboring spins. The average value rn

of a spin in the field h' should, follow a Curie law, i.e. ,

should be proportional to h' and inversely proportional

to T:

where c is a constant. The mean field theory assumes

that the field due to the neighboring spins is a function of

the average of all spins, namely, m. If m is very small,

this field is linear in m. Thus we have

where a is a constant. We can combine (1.27) and (1. 26)

to obtain
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for T > T . Equation {1.29) is the Curie-Weiss law. As

T approaches T , m diverges. For T < T , Eqs.

(1. 27) and (1. 26) do not have a meaningful solution [m

would point opposite to h according to (1.28)]. When m

is not very small, we need to keep higher order terms in

m in (1. 2?) for the total field. Including the next power,

we have

where b is another constant. This gives, instead of

(1.28),

For T> T we get the same answer for X . For T = T

(1. 3D gives

Note that b must be positive for (1. 32) to make sense.

c

c c

c
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For T < T , the solution for m is nonzero and not unique

for h = G;

The magnitude of m is fixed, but its direction is not. The

susceptibility X can also be worked out easily. One finds

The magnetic energy can be estimated by -h'- m.

For T > T there is no contribution when h = 0. For

T < T we have h'^ 0 even when h = 0; hence

and

It follows that the specific heat C = 8E/8T at h = 0 is dis-

continuous at T .c

Comparing (1.29), (1. 32), (1. 33) and (1. 34) to (1. 1),

(1. 2), and (1. 3), we obtain the exponents predicted by the

mean field theory:

cana

c

c

c



These values are often referred to in literature as "classi-

cal exponents" or "mean field exponents, " They do not

agree very well with those listed in Tables 1. 2 and 1. 3.

However, in view of how little we ptit in, the theory is

remarkably successful. It shows that the field provided by

neighboring spins is responsible for generating a nonzero

magnetization below T . The theory also exhibits a diver-

gent susceptibility and exponents which are independent of

details, i.e. , independent of the constants, a, b and c.

Furthermore, it is easy to generalize the mean field theory

to describe other kinds of critical points, owing to its sim-

plicity and the transparent role played by the order parame-

ter. It is not difficult to convince oneself that when the

above steps are repeated for antiferroraagnetic, liquid-gas,

binary alloy, and other critical points, the same exponents

(1. 3?) and a discontinuity in specific heat will be found. In

other words, complete universality of exponents is implied

by the mean field theory.

INTRODUCTION38
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The major unrealistic approximation in the mean

field theory is that nonuniform spin configurations have

been excluded. The effect of fluctuations has thus been

ignored. One trivial consequence is that no statement con-

cerning the correlation function can be made. The role of

the spin patches mentioned earlier cannot be accounted for

in this simple theory. It turns out to be extremely difficult

to understand and to analyze mathematically the effect of

fluctuations. All subsequent chapters are directly or in-

directly devoted to this problem.



II. MODELS AND BASIC CONCEPTS

SUMMARY

We introduce in this chapter several important con-

cepts. Among them is the block Hamaltonian, which will

play an important part in later discussions of the renormal-

ization group. The Ginzburg-.Landau Hamiitonian ia intro-

duced as a crude form of a block Hamiitonian. To make

the explanation of basic ideas concrete and simple, it is

convenient to introduce a few well known models, namely,

the Ising, XY, Heisenberg, and general n-vector models.

1. SEQUENCE OF MODELS

If we can show quantitatively as well as qualitatively

how critical phenomena can be derived from microscopic

40
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models via first principles, then we have a complete theory.

However, before attempting such a task, we must first

examine the merits of various models. In the course of

our examination, we shall bring out some fundamental ideas.

The criteria for a microscopic model are not rigid

and depend on the phenomena of interest. This is illus-

trated by the following sequence of models from which

critical phenomena can be derived. To be specific, we

shall always restrict the discussion to the ferromagnetic

critical phenomena in a given crystal.

Model {I): Electrons and atomic nuclei interacting

via Coulomb force.

This is certainly a microscopic model from which

almost all phenomena, including critical phenomena, can

be derived. But clearly this model is not practical as a

starting point in studying critical phenomena.

Model (2): Electrons in a prescribed crystal lattice

with an effective interaction.

The crystal lattice is now assumed to be known. We

take for granted the parameters specifying the electron-

electron interaction, the band structure, crystal fields, etc.
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furnished by experts in atomic and solid state physics who

started from Model (1).

This model is more suitable for analyzing critical

phenomena than Model (1), since the formation of the crys-

tal lattice and inner atomic shells are very remote from

critical phenomena. We are willing to take them as given.

Since critical phenomena are expected to result

from large scale collective behavior of electron spins, we

probably do not need to know the band structure and many

other details except for their combined effect on the inter-

action among electron spins. This model may then be

further simplified,

Model (3): Classical spins, one in each unit cell of

the given crystal lattice, with spin-spin interaction speci-

fied.

Here the quantum nature, the electron motion, and

many details of Model (2) are ignored. The spin-spin inter-

actions are given by parameters which are so adjusted as

to simulate, as nearly as possible, what Model (2) would

imply. The art of such simulation is not trivial [see

Mattis (1969) for example], and the most commonly studied
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versions of this model, such as the Ising and Heisenberg

models (which we shall define later), are very crude. How-

ever, we expect that the important physics lies in how a

large number of electron spins behave together. Being a

bit crude on the unit cell scale does not matter much. This

model is just as microscopic as (1) and (2) as far as critical

phenomena are concerned.

Model (4): Classical spins, one in each block of

2 x 2 x 2 unit cells with the spin-spin interaction specified.

This is one step further than Model (3) in eliminating

details. Each "spin" here is the net of 8 spins in Model (3).

Again as far as large scale behavior is concerned, we really

don't care about the details in each block, apart from the

combined effect of these details on the interaction of the net

spins on blocks. This model is clearly no less microscopic

than Model (3).

Model (5): Spins on larger blocks.

Instead of 2 x 2 x 2 cells per block we can take

3 X 3 X 3 or even 10 x 10 x 10 per block. How far can we

go in making the blocks bigger and still claim a micro-

scopic model? There is no clear-cut answer. But
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qualitatively, the answer is that the block size must be

much less than the characteristic length of critical phenom-

ena, i. e., the average size of spin patches mentioned in

Chapter I. If we take for granted that the patches become

larger as T gets closer to T , then the block size can be

taken to be very large when T is sufficiently close to T .

The idea and application of block construction was presented

by Kadanoff (1966, 1967).

Note that in the sequence of the above models, the

details which we expect to be irrelevant to critical phenom-

ena are successively eliminated. When such an elimination

process is being carried out, simplification is a practical

necessity to avoid excessive mathematical complication.

Most often, experimental data are used to determine

parameters in models, as calculation is impractical. Need-

less to say, the electronic charge, for example, in Model (1)

was experimentally determined. The knowledge of crystal

structure in Model (2) can be obtained through X-ray scatter-

ing. For Models (3), (4) and (5), we can fix the parameters

by fitting experimental data obtained at temperatures not

close to T .
c

c

c

c
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Traditionally most theoretical studies in critical

phenomena started with various versions of Model (3). We

shall mainly examine Model (5). The Ginzburg-Landau

model can be regarded as the crudest version of Model (5).

However, it is instructive to introduce Model (3) first and

show how Models (4) and (5) can be derived. This is the

program for this chapter.

2. CLASSICAL MODELS OF THE CELL HAMILTONIAN

A. The Is ing Model

The Ising model is a simulation of a uniaxial ferro-

magnet. Imagine a cubic crystal. Let each cubic unit cell

be labeled by the position vector c of the center of the

cell. Let the lattice constant (the length of a side of a unit

cell) be 1A for convenience and A will be used as the unit

of length. Let the whole crystal be a cube of volume L .

In each cell, there is one spin variable 0 which

measures the total spin in the cell c. There are L cells,

and thus L spin variables. These variables will be called

cell spins. The energy of these spins is a function H[a] of

 45

3

c
3

3



46 MODELS AND BASIC CONCEPTS

these 1? cell spins. It is the Hamiltonian for the cell

spins. Let us call it the cell Hamiltonian.

The model designed by Ising has a cell Hamiltonian

of the form

where the primed sum r is taken over only the nearest

neighbor cells of c. The spin variables are restricted to

two values 0 = ± 1. Equation (2. 1} is the simplest way of

saying that the energy is smaller if the spins agree with

their neighbors than if they are opposite. The constant J

can be estimated by the "exchange energy" between a pair

of neighboring spins in the uniaxial ferromagnet which (2. 1)

is supposed to simulate.

To make our later discussion easier, we generalize

(2. 1) slightly to

and regard each <j as a continuous variable. The addi-

2tional energy U(0 ) is large except near 0 = ± 1, as

c

c

c c
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shown in Figure 2.1. By adjusting the shape of U(0 ) , we

can account for the energy increase when the electron

spreads over into neighboring cells. Further generaliza-

tions to include next nearest neighbor interaction and other

effects can be made, but we shall not discuss them till later.

Figure 2. 1. A sharp minimum of U(<JC )/T at 1 implies
that the magnitude of oc is effectively
restricted to nearly 1.

21
c

2
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B. The XY Model and the Heiseaberg Model

If the spins are not restricted to pointing along one

axis, but allowed to point in any direction, we need to

describe each spin by a vector

Introducing the usual dot product of vectors and the notation

2
0 = 0 • 0 , (2, 1) or (2 ,2) (with a interpreted as ac c c c

vector) becomes the cell Hamiltonian of the Heiaenberg

model. It simulates isotropic ferromagnets. It is un-

changed when all spins are rotated by the same amount.

Note that we are treating or as a classical vector and not

as Pamli spin matrices.

"Fh® XY model is the case intermediate between the

Ising model and the Heisenberg model. It simulates magnets

with spins mostly pointing in a plane. We can use 0 as a
C

two-component vector (or . , <J_ ). The cell Hamiltonian

will still have the form (2. 1) or (2. 2).

c

Ic 2c
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C. The Space Dimension d and Spin Dimension n

We introduce the symbol n for the number of com-

ponents of the spin vector a . "Thus for the Ising, XY, and

Heisenberg models we have n= 1, 2, and 3. respectively,

The symbol d will be used for the dimension of the space

which the crystal is occupying. Usually, d = 3- For a mono-

layer of spins, d = 2; for a chain of spins, d = 1.

In later discussions we shall have the opportunity to

consider models with unphysical values of d and n,

Clearly, the total number of spin variables is nL

since there are n components for each spin vector. In the

subsequent discussion we shall use n and d as parameters

so that statements concerning Ising, XY, or Heisenberg

models can be obtained by assigning the appropriate value

for n and the appropriate value for d.

The above models are of course only the simplest of

many classical models which have been investigated. Some

other models will be mentioned as we proceed.

c

d
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3. STATISTICAL, MECHANICS

In the language of probability theory, each of the

d
nL spin variables is a random variable. The joint proba-

bility distribution P for these random variables is furnished

by the law of statistical mechanics:

Here Z is a normalization constant which is called the

partition function:

where the product is taken over all components and cells.

The integral is thus a multiple integral of nL variables.

The average value of any physical quantity which is

a function of the spin variables can be calculated by inte-

grating over P, For example,

The Fourier components a of the spin vector configura-

tion will play an important role in our subsequent discus-

sions :

d

k
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The sum over wave vectors k is taken over the L dis-

crete points in the first Brillouin zone. The density of

points in the k space, L (2TT) , is very large since L.

is a very large number. We can regard the cell Hamil-

tonian Hf <rl either as a function of the 0 's or as a func-
c

tion of O" 's, Equation (2. ?} simply defines a change of

variables.

As we noted in Chapter 1 (see (1.8)}, the scattering

experiments measure the correlation function

which is independent of i if the cell Hanailtonian is iso-

tropic in the spin variables.

It must be noted that the cell Hamiltonian describes

the spin configuration down to a minimum distance, i.e.,

the unit cell size. The variation of spins within a unit cell

is beyond the description of the cell Hamiltonian, The 0,

d

d d

k

k
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defined by (2,1), which are the same as those in (1.6), are

sufficient to specify the spin variations over a scale larger

than a unit cell and are the only random variables in the

cell Hamiltonian,

Let us add a term

to the Hamiltonian, i. e., turn on a magnetic field h in the

1 direction. Let the free energy per unit volume F be

defined via (2.5}

F is then a function of h, T and the parameters specify-

ing the cell Hamiltonian. Thermodynamic properties follow

once F is known. We list a few formulas:

Entropy S = -3F/8T

Specific heat C = T9S/8T = -T82F/3T2

Magnetization

Sus ceptibility

Note that (1. 13) follows from (1. 12) and the last equation of
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(2. 11). These formulas, together with integrals like (2.5)

and (2.6), form a well defined mathematical framework for

calculations. The calculated physical quantities are func-

tions of T and h. If this mathematical framework does

describe nature, the calculated physical quantities must

agree with the observed ones. In particular, the observed

singularities discussed in Chapter I must appear in the cal-

culated results.

The cell Hamiltonian H is a smooth function of T,

A

h, and other parameters; and integrations over exp(-H/T)

are well defined. How could singularities ever come out of

these formulas? Indeed they never would if there were a

finite number of spins. They come out only in the limit

when the number of spins approaches infinity. Real systems

are macroscopic and the number of spins is practically

infinite. It is not easy to see how this limit produces the

singularities. In fact this is the basic task of a theory of

critical phenomena, the task of explaining how singularities

d
come out of a smooth Hamiltonian in the limit of L -* » .

One approach is to calculate exactly and then take the

d
limit L -* •*>. This tarns out to be very difficult. A large
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proportion of the theoretical work on critical phenomena has

been applied to this task. The earliest and most important

achievement in this direction was Onsager's solution of the

Ising model of d=2 . It is important because it shows ex-

plicitly and quantitatively, even though in a very compli-

cated manner, that singular behavior observed near T

does indeed follow from a non-singular Hamiltonian via the .

laws of statistical mechanics, Onsager's art of exact eval-

uation of integrals has been pursued and further developed.

Numerical evaluation has also been pursued extensively for

models which have defied exact solution. We list some of

the results in Table 2 .1. Although such mathematical work

provides us with exact numerical and analytic information,

it does not furnish much physical understanding, and thus

offers few hints as to how approximations can be made.

The situation is roughly that we get the exact answers by

doing a tremendous amount of mathematical work, or else

we get very few or bad answers. There is no scheme for

getting approximate answers by doing less work. This situ-

ation is not unexpected. The quantities which we want to

calculate, such as the specific heat and susceptibility, are

c



Critical exponents for model systems calculated from series expansions !

IB ing

Heisenberg

Isiag

XY, spin 1/2

XY

Heisenberg,
spin 1/2

Heisenberg

Spherical

Spatial
Dimension

d

Z

2

3

3

3

3

3

3

Dimension
of Order

Parameter
n

1

3

1

2

2

3

3

flO

a

0* (log)

0,013*0.01

-0.02*0,03

-0. ZQ±Q. 08**

-0. 14*0.06

*

(3

0. 125*

0 312+°-°02
-0.005

0.38*0.03

0.5

Y

1.75

2.5*0. 1

1. Z50±0. 002

1.3S±0. 03

1. 318*0.010

1.43*0.01

+0.020
1>J -0.010

*

6

15. 04±0. 07

5.0*0.05

5

n

0.25*

0*

V '

'•"•ttS? !

0. 670± 0.006

0.70*0. 03

0.703*0.010

*

Exact

Table E. 1

Table adopted from Wortis (1973) {also Baker et al. (196?)].
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singular functions of temperature. Experience tells MS that

approximation methods usually do not work well for singular

functions. Furthermore, the singular functions have certain

universal behavior, as observations suggested (see Sec. 1. 5).

Because the answers to not depend on the details, making

approximations for the Hamiltonian would not make the

problem easier. We shall not attempt to explore the method

of exact evaluation of free energy or other quantities, which

has been treated extensively in books and papers,

In subsequent discussions, classical models will

serve only as a convenient basis for studying qualitative

behavior and for the renormalization group approach in

Chapter V.

4. BLOCK HAMILTONIANS AND KADANOFF
TR ANSFOR MATIONS

The cell Hamiltonians discussed above describe

interactions between cell spins. The parameters in a cell

Hamiltonian sum up the relevant effects of the details within

a scale smaller than a unit cell. Evidently, we should be

able to construct from a cell Hamiltonian a block
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Hamiltonian describing interactions between block spins.

Here we divide the crystal into cubic blocks, each of which

consists of b unit cells; b = 2, or 5, for example. Let us

define a block spin for each block as the sum of the b cell

spins in the block divided by b , namely, the mean of the

cell spins in the block. The parameters in the block

Hamiltonian sum up the relevant details within a scale of b

lattice constants.

How do we construct a block Hamiltonian given a cell

Hamiltonian? In principle it is straightforward. Before

writing down the answer, let us remember a simple rule in

probability theory illustrated by the following example. If

PC*!,*^,) is the probability distribution for the two randomJ. £*

variables <$. »q« , let us define
JL £*

How do we construct the probability distribution for q?

The rule is

d

d

d



58 MODELS AND BASIC CONCEPTS

P'(q) does exactly the same job as Pfq^q,), as far as the

average values involving q are concerned. For example

The q integral removes the 6 function and sets q equal

to (ql + q2)/Z.

Let us label the blocks by the position vectors x of

the centers of the blocks. As mentioned above, a block spin

is defined as the net spin in a block divided by the number

of cells per block:

where the superscript x on the summation sign denotes

the sum over b cell spins in the block. The components

of a are Q. , i runs from 1 to n as before. Therex ix

are L /b block spins. Thus o is simply the "mean"
X

of the cell spins within the block labeled by x. Clearly,

if b = 1, the block spins are the same as cell spins. If

b = L, then the block spin would be the mean of all the cell

1 2

d

d d
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spins in the system. Note that we use the word "mean"

instead of using the word "average" here for the sum of

spins divided by the number of spins. The word "average"

will be exclusively used for statistical average over the

canonical ensemble. In the limit of infinite block size, and

only in this limit, we expect the probability distribution for

the block spin to be infinitely sharply peaked at the average

value.

Following the rule illustrated by (2. 13), we write

down the probability distribution P'[o] for the block spins;

where the index c runs over all cells and i, j from 1 to

n. The function H[o] of the block spins 0 is the desired
2£

block Hamiltonian. It would be the total free energy were it

not for the constraints imposed by the 6 functions. In

view of the definitions (2. 5) and (2. 16), we have
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where Z is defined by (2. 5).

The block spins o can account for variations ofr x

spins over a minimum length of b, i.e., thejajgajiai^resolu-

tion of the block Hamiltonian H is b, whereas the spatial
A

resolution of the cell Hamiltonian H is 1. The block

Hamiltonian has a poorer spatial resolution. But if we are

not interested in variations of spin over a distance smaller

than b, then the block Hamiltonian is equivalent to the cell

Hamiltonian in the sense that they produce the same average

of interest. In our study of critical phenomena we are only

interested in the variations of spins of long wavelengths,

much longer than I lattice constant.

We can define another block Hamiltonian which is

very similar but not identical to the one defined above. We

take the cell Hamiltonian H[a] and write it as a function of

the Fourier components 0, via (2. 7). This is simply a
IX

change of variables. Then exp(-H/T) is the probabiEty

d
distribution for the nL. new random variables o... Again

let us remember a simple rule of probability theory which

ik
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is essentially the same one as illustrated by (2. 13), Con-

aider a probability distribution of two random variables

P(q ,q_) . If we are only interested in q , then we obtain

the probability distribution P ' (q . ) for q alone by inte-

grating out q :

Thus if we only interested in a, with k smaller than a
1C

specific magnitude A , we can integrate out all those a..
i*C

with k > A from exp(-H/T):

Now P' is the probability distribution for o., with those

k vectors within the sphere of radius A » The function

H[o] of these variables is a block Hamiltonian in the follow-

ing sense. Without the Fourier components of k> A, vari-

ations of spins over a scale shorter than — 2n A cannot

be specified. That is, the spatial resolution of H[0] is

2rrA . If we identify 2trA as a block size b, then H[o]

1  2  1

1  1

2

ik

1

1 1

61
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in (2. 19) has an interpretation similar to that of H[cr] de-

fined by (2,16). In (2. 16) we integrate out finer details

within each block to downgrade the spatial resolution to a

size b. In (2. 19) we achieve the same effect by integrating

out higher Fourier components. Quantitatively the two

block Hamiltonians are not identical. In our qualitative

discussions we shall ignore the difference.

Similar to the block spin (2.15), we define

which specifies the spin configuration down to a distance

b~ A , Qualitatively, o(x) is the same as a , which is

the mean spin over a block.

The procedure (2. 16) or (2. 19) of obtaining the

block Hamiltonian H[o] from the cell Hamiltonian H[Cf]

will be referred to as a Kadanoff transformation. We shall

denote this procedure symbolically as

where the subscript b indicates that the block size is b

times the cell size. We set K = 1.

1
x

1
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Evidently, given a block Hamiltonian H [0 ] , we can

construct another block Hamiltonian H"[CT] for "block spins

defined on still bigger blocks. For example we can combine

d
2 blocks to make one new block. The construction of the

new block Hamiltonian is the same as that of the old block

Hamiltonian from the cell Hamiltonian. This means lower-

ing the spatial resolution by still another factor of 2, i.e. ,

an application of K . We shall write, for combining s
£

blocks.

whrer

Y
in the new block centered at x , Alternatively K can be

defined using Fourier components:

which follows (2. 19) and brings the cutoff wave number

down from A to A/s.

d

is the mean spin over the old blockss
d

s
d

iy

s
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Clearly,

The last equality is obvious since combining b cells for

each block and then combining s blocks for each big

block is the same as combining (sb) cells for each big

block. In general

Kadanoff transformations will play a major role in the con-

struction of the renormalization group in Chapter V.

Let us comment on a couple of technical points.

The Fourier components 0,, are complex. We

need to be more careful in defining the integration over

do in (2. 19) and in (2. 24). Note that a' = 0 sinceiic IK i •* K

O.(x) is real. Thus, there are just two real variables in-

volved in a and a, , namely, Re a., and 1m 0 ,
IK 1*~K lie IK

not four. The integrations such as (2.19) and {2. 24) must

be defined by integrations over Re 0,, and Im 0., :ik ik

d

d

d

ik
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for each pair 0., and 0.  . ik i- k

We have been using continuous spin variables instead

of discrete ones. The main reason is that discrete spins

•will become essentially continuous after a Kadanoff trans-

formation. For example, suppose that we have block spins

each of which can assume two values, +1 or -1. We com-

bine 8 blocks to form a new block. The new block spin,

i.e., the mean of the 8 old spins, can assume one of 9

values, i.e., ±1, ±6/8, ±4/8, ±2/8, 0. Nine values make

the new block spin essentially continuous. Coarse graining

destroys the discreteness as we expect intuitively. Further-

more, it is easier to discuss Fourier transforms if we use

continuous variables.

However, it is possible to modify the definition of

the new block spins to preserve the 2-valueness at the ex-

pense of the precise physical meaning of the new spin vari-

ables. We shall discuss this point in Chapter Vin.

In summary, the block Hamiltonian is obtained from

the cell Hamiltonian by a smearing or coarse graining
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process. It specifies the interaction over a scale b~ A

dand sums up gross features of b cell spins. In view of

(2. 16) or (2. 19), it depends on T, as well as other parame-

ters specifying the cell Hamiltonian, like J and h in (2, 1)

and (2. 9). Such dependence is expected to be non- singular

for the following reason. The interaction between block

spins is short ranged since it originates from the interac- •

tion between cell spins which is assumed to be of short

range. Thus the interaction between block spins depends on

the behavior of a finite number, i.e., ~ b , of cell spins in

several blocks. As we remarked before there can be no

singular behavior from a finite number of cell spins. Thus

the block Hamiltonian is a smooth function of T and other

parameters of the cell Bamiltonian,

We have illustrated the relationship between

Model (3) (the cell Hamiltonian), and Models (4) and (5)

(the block Hamiltonian), in the beginning of this chapter.

Carrying out the calculation explicitly to obtain either (5)

from (4), (4) from (3), (3) from (2), or (2) from (I) is very

involved and one has to make proper approximations. Some

-1

d
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explicit calculations will be presented later when we discuss

the renormalization group.

5. GINZBURG-LANDAU FORM

The Ginzburg-Landau approach has played an impor-

tant role in the theory of superconductivity and other critical

phenomena. It starts by assuming a simple form for the

block Hamiltonian, Customarily this simple form is written

where

The coefficients a. , a , a , c are functions of T, and
^ L* ^t

h is the applied magnetic field divided by T. We assume

as
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the system is isotropic in spin space apart from the e-ffect

of the applied magnetic field and is also effectively isotropic

in coordinate space. The block spin cr(x) is defined by

{2. 20). It specifies the spin configuration down to a dis-

tance b "* A . This block Hamiltonian is really a function

of the discrete set of Fourier components o. :
K,

is the probability distribution for 0 ,
£V

k < A . We can write a similar block Hamiltonian in terms

Here a are block spins defined by (2,15). The sum over

1

kand

x
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y is taken over the 2d nearest neighbors of the block x.

The quantities (0 - o~ )/b can be identified to a first
x+y x

approximation as the gradient ya in (2. 27).

The meaning of the various terms in the Ginzburg-

Landau form of the block Hamiltonian can be understood

easily through (2. 30). The meaning of the -h • O term
X,

is transparent, and let us forget about it for simplicity.

2
If we drop the gradient term, namely, the (a - O )

3s» 3C i 37

term, then (2. 30) becomes a sum

with

Each of the terms in the sum (2. 31) depends only on O of

one block. That is, each block spin is statistically inde-

pendent of other block spins, since the probability distribu-

tion is a product I I exp(-U(o ) ) . We then have a system
x x

d d
of JL /b non-interacting blocks. Each block has an effec-

tive Hamiltonian b U(o ), which is the free energy of the

block with mean spin constrained at cs . This free energy

x

d
x

x



70 MODELS AND BASIC CONCEPTS

must be a smooth function of 0 , T, and other parameters

since there is only a finite number of cell spins in a block,

as we remarked before. Thus (2. 32) is just the first few

terms of the power series expansion of this free energy.

The coefficients a _ , a , &A , and higher coefficients not
u 2 ^

included must all be smooth functions of T and other

parameters. Since only terms up to the fourth power of

0 are kept, we expect that the Ginzburg-Landau form

might not be a good approximation for large a . It will
3C

certainly make no sense if a, is negative because U{0 )
^ 3C

would then approach -°> as 0 -» » and the probability

distribution P <* exp(-H[ 0] /T) would blow up.

2
When the gradient term ( 0 - 0 ) is included in0 x x+ y

(2. 30), the block spins are no longer independent. Thus

the Ginsburg-Landau form describes the interaction between

neighboring blocks by this simple gradient term. For a

ferromagnet we expect that the interaction will tend to make

a block spin parallel to its neighboring block spins. The

gradient term describes this tendency with a strength speci-

fied by the coefficient c. This term vanishes only if all

block spins have the same value. The greater the

x

x

x
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difference among the block spins, the larger H/T becomes

and hence the smaller the probability. We expect that the

interaction between block spins is not completely accounted

for by the gradient term alone. There should be higher

power products of neighboring block spins;

To sum up, the Ginz burg -Landau form of block

Hamiltonian is the simplest but not the most general form,

The most general form would involve all powers of products

of block spins. The Ginzburg-Landau form keeps only the

lowest powers. Of course, it can be simplified further by

4
dropping the o term. However, that would be too serious

3C

a simplification, as will be clear in Chapter III.

Note that we have excluded fractional powers or any

other kind of singular function of 0 from the block Hamil-
J$i

tonian. This exclusion is based on the assumption that the

interaction between spins is short ranged so that the terms

in the block Hamiltonian describe "local properties" per-

d
taining to ~ b spins, and therefore must be smooth func-

tions of 0 . h. and T.x



HI. THE GAUSSIAN APPROXIMATION

SUMMARY

We solve the Gimzburg-Landau model in the Gaussian

approximation. In this approximation the most probable spin

configuration is obtained by minimizing the block Hamiltonian.

Fluctuations around the most probable configuration are

approximately treated as independent modes with Gaussian

distributions. The exponents thus obtained are a = 2 -d/2,

(3 = 1/2, y = 1, 6 = 3, T]= 0. The Ginzburg criterion is dis-

cussed. Although the Gaussian approximation is an over-

simplification, it illustrates many important features of

critical phenomena. We also discuss briefly strong effects

of fluctuations for d £ 2, including the Hohenberg-Mermin-

Wagner theorem.

72
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1. MOST PROBABLE VALUE AND GAUSSIAN
APPROXIMATION

Consider a probability distribution P{q). If it is

largest at q = q, then q is the "most probable value" of

q. The average value (q) is not necessarily the same as

q, but is close to it il the maximum is sharply peaked. In

this case we can fit the peak of P(q) with a Gaussian

where \ measures the half width of the peak. Such a fit

for P(q) is our Gaussian approximation. The advantage

of a Gaussian is that it has many convenient mathematical

properties.

We now illustrate the application of this approxima-

tion. Consider a system with one degree of freedom.

There,is one coordinate q and a Hamiltonian H(q), which

is just the potential energy (we neglect the kinetic degree

of freedom). Let the position of mechanical equilibrium be

q , where H(q) is minimum. This is the most probable

value since P « exp(-H(q)/T). Near q the potential is

approximately H(q) plus a, harmonic oscillator potential
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The probability distribution is then approximately a Gaussian

if higher powers of (q - q) can be neglected:

Clearly the average of q is then the same as the most

probable value q:

and the fluctuation of q from the average is measured

b y A '

2In order to justify dropping higher orders of (q - q), X

must not be too large. In other words, the fluctuation of q

must be sufficiently small, since (3. 1) is a Taylor series

expans ion valid only for small {q - q*).

Under the Gaussian approximation, the free energy
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f is just H(q) plus the free energy for a harmonic oscilla-

tor

The generalization to more than one degree of free-

dom is straightforward. Let there be N degrees of free-

dom, q a , <x= 1, 2,... ,N, and write q = (q^ .., ,qN). Let

the minimum of H[q] be at q. As we learned from mech-

anics, the potential near the minimum can be approxi-

mated by that of N independent harmonic oscillators, the

normal modes:

where q ' are linear combinations of q - q and are1 a a
called "normal coordinates" giving the amplitudes of normal

modes. The quantities X . are the eigenvalues of the

-1 2
matrix T (8 H/8q 8q0) ~ . Thus the generalization to

a p q =q

more than one degree of freedom is accomplished simply by

adding more independent normal modes, and Eqs. (3.4),

a 1 N

2
l



76 THE GAUSSIAN APPROXIMATION

(3.5), and (3. 6) are generalized, respectively, to

In summary, within the Gaussian approximation the most

probable configuration q gives the average of q; and q ' ,

the fluctuations of q, are independent modes each following

a Gaussian distribution.

2. MINIMUM OF THE GINZBURG-LANDAU
HAMILTONIAN, LANDAU THEORY

We proceed to apply the Gaussian approximation to

a block Hamiltonian H[a], We shall first determine the

minimum of H[ cr] and then approximate H[0] as that

minimum plus a sum of harmonic oscillator terms. To be

specific we use the Ginzburg-Landau form (see II. 4):
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Implieity (3. 11) is a function of the Fourier components

0, with k < A through the relation
Ki

The explicit expression, in terms of O is given by (2. 29),

The role of the q in the discussion below (3.6) is played

by a.k ,

The most probable spin configuration o", which

minimizes H[0], must be uniform, i.e.,

so that the gradient term vanishes. This means that all

Fourier components for this configuration vanish except for

k = 0:

Substituting a(x) = a in (3. 11), or (3. 13') in (2.29), we get

The value of a can be found by setting the derivative

77

k

a

ik
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of (3.14) to zero and solving for 0;

Clearly <? must be along the direction of h . In the limit

of very small h, the desired o, which is the magnetization

m in this approximation, is

where h is the unit vector along h and

We plot {3, 14} in Figure 3, la for & > 0 and in Figure 3. Ib
id

for a < 0. Eecall that a. must be positive. The abscissa
£t -t

in these plots is the component of 0 along the direction

of h.

We have no information about a ,a except that
*£ Q

they must be smooth functions of the temperature. It was

Landau's observation that interesting consequences appear

when a. vanishes, and that we should look at the small
£*
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Figure 3,1. Values of the block Hamiltonian evaluated at
uniform configurations. A small magnetic
field h is assumed to be present.
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range of temperatures near T-, the zero of a (i.e.,

a = 0 if T = T_). Within this small range a, may be

taken as a constant and

where a' is a constant, since a , a. are both smooth
& &» ^*

functions of T.

Assume a' > 0. When T changes from above T_

to below, a changes sign. If T > Tft , as in the situation

shown in Figure 3. la, Eqs. (3. 16) and (3.14) give, to first

order in h ,

If T < T_ , we have the situation shown in Figure 3. Ib,

thus from (3. 17) and (3. 14)

2

4

0

2 0

2 0

?
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It is now very plausible that Tn can be identified as the

critical temperature T because, as h ~* 0, "a vanishes

for T > T but not for T < T , If h is identically zero

then H[5]/T is minimum whenever the length of the vector

5 is m , regardless of the direction of a.

So far we have been looking at the most probable

spin configuration but have not included any fluctuation of

spins. Suppose that we neglect fluctuations altogether.

Then we get the "Landau theory of second order phase

d
transition. " The free energy FL> would be simply the

minimum of H[o], The susceptibility X = 0(J/9-h)_ is, by

(3.20) and (3.22),

which diverges at T . Compared with (3.21), there is an

extra term in (3, 24), which gives rise to a discontinuity

AC of specific heat C = -T92F/8T2 at T r

0

c

0 0

0

T

c
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These results (3. 25) - (3. 27) agree with the mean field

theory [see (1. 26) - (1. 37)] .

So far we have only looked at the most probable spin

configuration. Now we turn to the fluctuations around the

most probable configuration in the Gaussian approximation.

We shall discuss the cases T > T and T < T separately.
c c

3. GAUSSIAN APPROXIMATION FOR T > Tc

In this case a_ > 0 and we set h= 0 for simplicity.
£

The most probable 0"(x) is zero. The Gaussian approxima-

tion is easily read off from (2. 29) by keeping terms up to

which is analogous to {3, 7), and we identify
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and a., as the normal coordinates q ' . The results (3.8),IK £

(3. 9), and (3.10} now take the form

^ik> = 0 , (3,29)

respectively. Here F is the free energy per unit volume.

2
The quantity { <J., | } is what we called the corre-

lation function G(k). It is proportional to the differential

scattering cross section as discussed in Chapter I. (See

(1. 11). ) Since a = a l ( T - T ), Eq. (3. 30) gives
£> <£ C

where the second quantity is proportional to the magnetic

susceptibility x (see (1.13)).

By the definitions of the critical exponents T) and y

(see (1. 9) and (1. 3)), we have

ik



in view of {3. 32) and (3. 33).

The specific heat is obtained by differentiating the

free energy twice with respect to T . Since a is a

smooth function of T , the only possible source of a singular

2dependence on T is through the vanishing of a?+ ck in

the logarithm of (3. 31) when T- T -» 0 and k - 0. Differ-

entiating (3. 31) twice, we obtain

We have replaced the sum over k by an integral over a

sphere of radius A :

where the upper limit A in the k integral is understood.

The symbol "I.s." in (3,35) means less singular terms,

including integrals of (a + ck) , In (a + ck), and non-
Lf Lt

singular terms. Since a = a ' (T- T ), a term is more
£f £* O

THE GAUSSIAN APPROXIMATION84

0

2

c

-1
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singular if more powers of a? appear in the denominator.

2 - 1
Note that the (a_+ ck ) = G(k) measures the fluctuation

£*

of the spins. For small T- T long wavelength (small k)

fluctuations are very large. These large fluctuations are

what cause the integral of (3. 35) to diverge at T-~ TC .

To extract this divergence, let us make the follow-

ing change of integration variable, from k to k':

Then we have

The upper limit of the k ' integral is A§ , which goes to

infinity as T - T — 0 (i.e. , | -* « )» For d < 4 , this

integral converges and gives a numerical constant.

Restricting ourselves to cases with d < 4, we con-

clude from (3.29) that, for very small T - T ,

2

c

c

c
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To sum up, the Gaussian approximation tells us that

above the critical temperature T the susceptibility (3. 23)

and the specific heat diverge as T approaches T . The

critical exponents y = I , f | = 0 , o = 2 - d / 2 , are independ-

ent of the details of the Hamiltonian, since the parameters

a., a' a , and c do not appear in them. The singular
U £ ~Jr

behavior does come out of a smooth block Hamiltonian. We

shall examine the accuracy of the Gaussian approximation

after we discuss the case T < T .c

4. GAUSSIAN APPROXIMATION FOR T < T
c

For T < T additional features appear as a result

of a nonzero 5" even when h -*• 0. We shall keep a finite

but very small h pointing in the 1 direction. Thus

d/2- -
(cr ) = L, or , with 0 given by (3. 22) and {3.23), and

•L rC *"" U

cr = 0 for k ^ 0 or i •£ 1. Expanding H[o?]/T in powers
x&

of o - 0 and keeping all terms up to the second power, we

obtain using (2.29) and (?. 15),

c

c

c
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where H[<f|/T is given by (3.24), and in given by (3.22).

Again this expression has the form of (3, 7) and we identify

•z X as h/2m+4a.m + ck and h/2m4-ck , and q' as
Z i ^ 1

<J., - cr., . The results corresponding to (3.8)- (3. 10) are
ik ik

In (3.43) and (3.45) we have set h = 0 and written

2a' (T - T ) for 4am 2 .
d C T!

We see that O,, , which will be referred to as the

amplitude of the longitudinal mode (parallel to o), behaves

1 -1 2 2 2

1k



88 THE GAUSSIAN APPROXIMATION

very differently from a., , i = 2, , , . , n, which will be re-
il£

ferred to as the amplitudes of trans verse modes (perpendic-

ular to 5"). In the limit k -* 0, G. (k) equals x (given by

(3.25)), but G (k) becomes m/h, which blows up in the

limit h -* 0. The result G (0) = m/h is a consequence of

isotropy in spin space, as will be discussed in Sec, IX, 7.

2 2
The specific heat is again obtained via C = -T9 F/3T

from (3.45), The first term in (3.45) gives a finite but dis-

continuous contribution to C as noted before [see (3.26)].

The last term of (3.45), which comes from the transverse

modes, does not contribute. The second term, which comes

from the longitudinal modes, has the same form as the sec-

ond term in (3. 31) but with 2a ' (T - T) replacing
£* O

a« = a'~ (T- T ), For this term, we can go through the same
2 2 c

calculation as (3. 35) - (3. 39) to obtain

Here we have extended (3. 38), the definition of §, to

1

1

1
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Note that what is in the brackets [ ... ] in (3.46) is the

same as what is in them in (3. 39), but, instead of n in

|-2
front of the brackets, we have 2 in (3,46),

5. THE CORRELATION LENGTH AND TEMPERATURE
DEPENDENCE

The singular temperature dependence of the quanti-

ties examined above can be neatly summarized in terms of

? defined by (3.47). For T > T , Eqs. (3. 30) and (3. 39}
c

can be written as

For T<T Eqs. (3.43) and (3.46) assume the form
c

T
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The constants C , C' are given by (3. 39) and (3.46),

respectively,

We shall call § the correlation length. It measures

the distance over which spin fluctuations are correlated.

This is more easily seen in coordinate space. Fourier

transforming G(k), we get

The upper limit of the k' integral is A§ as in (3. 39). For

d = 3, the integral (3.52) is elementary, and we find
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Thus the correlation of spins persists over a distance §.

For other values of d, the integral will give other functions,

but the same physical picture remains. We can identify §

as a measure of the average size of the spin patches men-

tioned in Chapter I. Anticipating subsequent developments,

we introduce the exponent v to characterize the divergence

of this size:

Here in the Gaussian approximation, we have

In (3.48)- (3.51) it is clear that the singular behavior

of these quantities for vanishing |T- T j and k can be

viewed as a result of § -» » , That is, as far as the singular

temperature dependence is concerned, g JLs the only rele-

vant length. The role of § is evident in the calculation of

the specific heat. The change of variable k = k'/§ in (3.37)

4-d
enabled us to obtain the singular part of C. The factor §

d
in (3. 39) follows directly. The d k in the free energy per

-d
unit volume (i.e., per d powers of length) gives 5

91

c
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Differentiating with respect to T twice gives

-1/v
since each T - T accounts for 5 • Thusc

Here v = 1/2. The counting powers of § is the basis of '

the scaling hypothesis which we shall explore in Ch. IV.

6. SUMMARY OF RESULTS AND THE GINZBURG
CRITERION

The exponents in the Gaussian approximation can be

read off from (3.25)- (3. 21), (3.32), (3.39), and (3.46).

We have

and
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The ratios of the coefficients

are obtained from (3.39), (3,46), (3.48), and (3.50). These

results are independent of the specific values of a ' , a ,

and c . To this extent, {3. 58) and (3. 59) exhibit univer-

sality.

The Gaussian approximation gets the same expo-

nents as the mean field theory except for the specific heat.

In addition to a discontinuity at T there is a divergence

for d < 4, This divergence is a result of fluctuations of

modes of small k. In the mean field theory all modes of

k ^ 0 are neglected. We can get a rough idea of how im-

portant the fluctuations are by comparing the size of the

discontinuity AC [see (3. 26)] to the size of the divergent

term given by (3. 39) and (3.46). The ratio is

where

2 4

c
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Thus when the temperature is close to T within a range

£ _ T , the fluctuations are expected to be important. The

smaller Q is, the smaller this range will be. This quali-

tative criterion was pointed out by Ginzburg (I960).

The motivation for Ginzburg's study of the fluctua-

tions was to understand why a finite discontinuity in specific

heat was observed for some critical points (in supercon-

ductors, and in some ferromagnetic and ferroelectric

materials) but a singularity was observed in addition to the

discontinuity for other critical points. Ginzburg argued that

such an observed difference was actually quantitative, not

qualitative. When £ happened to be so small that the

range CT T could not be resolved experimentally, then

the divergence produced by the fluctuations would not be

seen.

T

T c
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The length § defined by (3, 62} estimates the cor-

relation length for temperatures far away from T [see

Eq, (3,4?)]. It can be deduced from neutron scattering

data, for example. The discontinuity AC can be obtained

directly from specific heat data. Estimates of C, f°r

various materials can be found in the paper of Ginzburg

(1960).

When we apply the above results to a superconduc-

4
tive critical point or to the X point of He , the length ?

is not directly measurable but can be estimated. In the

former case, § measures the size of a "Cooper pair"

(a few thousand A), and AC is a few joules/ccK° . This

makes Q ~ 10~ , which makes the range C T ~10 °K
J. J. C

too small to observe at present. In the latter case, §

(~ a few A) is the deBroglie wavelength of a helium atom

at T «* 2. 2°K, and AC is about a joule/cc"K. Thus
c '

C T ~ 0. 3 for the X point.

For antiferromagnetic critical points, the diver-

gence of the specific heat is very pronounced. The length

§ is of the order of a lattice spacing and AC is not very

o

c

T

o

o

15 -15

o

o
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well defined. The smallness of § and the pronounced

divergence illustrate the importance of fluctuations.

7. FLUCTUATION AND DIMENSION

From the above results for the specific heat

 it is evident that for d> 4, C does

not diverge at T , This is an indication that 4 is a

special dimension. This point will come up again later,

It is also evident that the smaller d , the more

serious the divergence. We shall show that for d 6 2 the

fluctuations become so large that for n> 1 a nonzero

order parameter (o(x)) can no longer exist in the limit of

infinite volume and zero external field h. For d = 1,

(o(x)) must vanish in the same limit even for n- 1.

Let h point in the 1 direction as before. Then the

correlation function of the transverse components o, ,

i =2, , . » , n in coordinate space is

o
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We have used (3.44) for G. . Since the magnitude of Q.(K)

is bounded, the integral in (3. 63) roust be finite for any

value of h. In the limit h-*0 and with m assumed

finite, (3. 63) diverges as (h/m) for d< 2 and

diverges like ln(h/m) for d = 2 . Thus m cannot be non-

zero, i.e. , (o~(x)) must vanish for n ^ 2 , d s 2, as h -* 0.

Qualitatively the situation is as follows. When

h = 0, H[cr]/T is isotropic in the spin space. The most

probable configuration o" is uniform with magnitude m ,

but all directions are equally probable. Now imagine a

configuration o(x) with | o ( x ) J = m but with the direction

of o(x) turning gradually as x changes. This configura-

tion would be just as probable as 0 were it not for the

2
spatial variation of direction which contributes to the ( V C J )

term of H[Cf]/T. If the direction of o"(x) varies periodi-

cally with a very long wavelength, ( V d ) will be very small.

For such a configuration the mean spin is zero because of

the change of direction. There are many such configura-

tions with very long wavelengths. In the limit of a large

volume, the number of these configurations is very large.

It is a matter of competition between the number of such

2

97
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long wavelength configurations and the suppression of proba-

2
bility due to ( v a ) . For d > 2, the latter wins. For d £ 2

the former wins, and (cr (x)) thus vanishes.

Rigorous proofs of the above conclusion have been

worked out by Hohenberg (1967), and Mermin and Wagner

(1966).

Clearly, the above conclusion applies only for n a 2

under the condition of continuous rotational invariance in

spin space. For n = l , the Ising model of d = 2 , for ex-

ample, does have a nonzero (o(x)} for h -* 0 below T

For d = l even in the case n = l , (0(x)) has to

vanish in the Limit h -* 0 and infinite volume [see Landau

and Lifshitz (1953)]. The arguments goes as follows.

Figure 3. 2a shows the most probable configuration

5(x) = m  For h -* 0, a(x) = -m becomes equally prob-

able since H[0]/T is unchanged under a change of sign

of a. Figure 3. 2b shows a configuration with a "kink. "

Apart from the region near the kink, o(x) is either m or

-m , Thus H[o>]/T for such a configuration differs from

H[5]/T by an amount

c

o o

o

o
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Figure 3,2. (a) The uniform and most probable spin con-
figuration, (b) A configuration with one kink,
(c) A configuration, with many kinks.
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integrated over the region of the kink where V a £ 0, K is

thus the "kink energy. " Figure 3. 2c shows & configuration

with many kinks. The value of H[0]/T is then

H[o]/T~ H[5]/T + NK/T ,

where N is the number of kinks, if the kinks are suffi-

ciently far apart. The locations of the kinks are random.

Thus we have a gas of kinks with a density proportional to

As long as T ^ 0 the density of kinks is finite and the sign

of o(x) will alternate at random. Thus the average a(x)

must be zero.

8. DISCUSSION

Now consider d > 2. In the Gaussian approximation,

the spin fluctuation is kept only to second order. Thus the

approximation is good if the fluctuation is small. Unfor-

tunately, near a critical point the fluctuation is very large

and the Gaussian approximation is therefore expected to be

poor. In fact the exponents (3. 58} do not agree well with
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the observed ones. One needs to include higher order terms,

x. e. , to include the "interaction" between the plane wave

modes, which are independent modes in the Gaussian approx-

imation. The term responsible for the interaction is the

4
a o term in the Ginzburg-Landau Hamiltonian.

Evidently the closer T is to T , the larger the

fluctuation is and the more important it is to include the

effect of interaction among modes. The criterion for how

close T must be to T for the fluctuation to be large is

just the Ginzburg criterion discussed above. That is, the

criterion for the breakdown of mean field theory (fluctua-

tions ignored) is the same as for the breakdown of the

Gaussian approximation, where fluctuations are included

but in a truncated manner. The value of Q _ given by

(3. 61) estimates the effect of interaction. The larger a

is, the larger C is.

In Chapter IX we shall examine the details of a per-

turbation expansion in powers of a for calculating various

quantities. It will be shown that the expansion is actually

an expansion in powers of

c

T

4

T

4

4
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Therefore, for d < 4, such an expansion will not converge

for |T - T | -» 0. It is very difficult to improve the solu-

tion beyond the Gaussian approximation without summing the

whole perturbation series, i.e. , solving the model exactly.

This difficulty does not appear for d > 4 as (3. 66) indicates.



IV. THE SCALING HYPOTHESIS

SUMMARY

We introduce the scaling hypothesis and summarize

its consequences with regard to critical exponents. The

ideas of scale transformation and scale dimension are

discussed.

1. THE CORRELATION LENGTH AND THE
SCALING HYPOTHESIS

The scaling hypothesis is a plausible conjecture. It

makes no reference to any model and has been very success-

ful in correlating observed data. The basic idea of this

hypothesis is that the long range correlation of spin fluctua-

tions near T is responsible for all singular behavior.
103
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There are many different ways of formulating this hypothesis

mathematically. The following is just one of them.

Recall that a characteristic length § , the correla-

tion length, emerged naturally in the Gaussian approxima-

tion of Chapter III. It is a measure of the range over which

spin fluctuations are correlated, or the average size of a

spin patch in which a sizeable fraction of spins point in the

same direction. We showed that the singularities in various

physical quantities at T could be understood as a result

of the divergence of § at T .

A correlation length can be defined, without reference

to the Gaussian approximation or any specific model. Since

G(k) = ( I 5, I ) , as a function of k, peaks sharply around
1C

k = 0, we can identify ? as the width of the peak. G(k) is

directly measurable by scattering experiments. More pre-

cisely we can define in the absence of an external field,

Empirical data shows that § diverges at T , and we use

an exponent v to characterize this divergence for

IT- T 1-0:1 c'

c

c

2

-1

c
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For T < T the correlation length must be defined with
c

G»(k) = { |0 | > if n> 1. Here we shall assume that

v = v" . This is an additional assumption which will be

shown to be plausible later. The proportionality constants

in the two cases in (4.2) are, in general, different.

The scaling hypothesis states that the divergence of

§ is responsible for the singular dependence on T - T

of physical quantities, and, as far as the singular depend-

ence is concerned, § is the only relevant length.

This is a very strong hypothesis. It asserts that the

large spin patches, but not the details over smaller scales,

account for the physics of critical phenomena.

As an illustration of the use of the scaling hypothesis,

consider the correlation function G(k). Let b. ,b .... be

various microscopic lengths, which are much smaller than

? when |T-T I is sufficiently small. Write G(k) as a
i c '

function of

1 1k
2

c

1 2
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where we have expanded f in powers of the second, third,

.,, arguments and kept only the leading power. Let us

clarify (4. 3} further. What we did is to keep the first argu-

ment of the function f (C • X , L, ,. .. ) fixed and consider
Jt M

the limits as X , , X_ ,.. . become very small. This limit

of f will be proportional to some powers of X , , \« ,...,i &

i. e.,

where the proportionality constant is called g ( £ ) and the

powers x ,x_, . . . of course are properties of f. Now

write

1 2

1 2
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We then obtain (4. 3). The g must contain the right powers

of microscopic lengths b , b _ , . . . and other parameters so
i M

V
that the unit of § g comes out correctly as the unit of the

correlation function G(k). Note that k is entirely arbi-

trary and k§ can assume any value. The scaling hypothe-

sis says that the singular temperature dependence enters

through 5 and any other dependence on T implicit in g

is smooth and can be regarded as constant over a small

temperature range around T .

The hypothesis does not give the value of y, nor

does it tell what the function g is. But it does relate y to

previously defined exponents. Since

we have

by the definition of y [see Eq. (1. 3)] and the fact that

X/T = G(0). For |T- T | - 0, k ^ 0, we have, by the

definition of r\ [see Eqs. (1.8), (1.9), and (1. 11)],

-2 + TI
G(k) « k . This implies that

-1
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We have thus derived a relationship among the exponents

TI , Y i and v. Such a relationship is often referred to as

a "scaling law, "

2, SCALE TRANSFORMATION AND DIMENSIONAL,
ANALYSIS

The application of the scaling hypothesis is facili-

tated by using the ideas of scale transformation and dimen-

sional analysis, because there is onlyt one length § to keep

track of besides k and Lt the size of the system.

A scale transformation by a factor s =2 doubles the

unit of length by a factor of 2. If s = 3 the transformation

triples the unit or reference of length, and similarly for

other values of s . Under a scale transformation an inter-

val in space Ax is changed to Ax':

and a wave vector k changes according to

-1



In other words, in the new units, a space would appear

shrunk to half and a wave vector enlarged to twice as large

if 8 = 2, This is similar to a rotation or a translation of

reference frame. In the new frame, objects appear rotated

or shifted in position.

We define the scale dimension of Ax as -1 and

that of k as +1, according to the power of s in (4.8) and

(4. 9). In general if, under a scale transformation

then the scale dimension of A is X . The usual rules of

dimensional analysis apply. For example, the scale dimen-

2
sion of (Ax) is -2, that of volume is -d, and that of

1. 05
k A is 1. 05 + \ . Subsequently, we shall use the word

"dimension" for "scale dimension, " for simplicity.

Clearly the dimension of the correlation length § is

-1. What is the dimension of G(k)? According to (1. 10),

2
G{k) is measured in units of (spin density) x volume. But

we have not defined the dimension of spin. On the other

hand, (4. 3) says that G(k) is proportional to 5y times a

SCALE TRANSFORMATION 109
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function of k|, which has the dimension zero. Thus the

dimension of G(k) is -y. It follows that the dimension of

spin density d satisfies

We are using the dependence on § of G to fix the dimen-

sion, since, under the scaling hypothesis, § is the only

_2 + TI
relevant length. Since G(k) « k for |-» °° , we must

have -2 + rj as the dimension of G(k). Thus -2 + TI must

equal -y. Thus the scaling law (4.7) is simply a condition

for the consistency in the dimension of Gfls).

If the dimension of a quantity is known, the depend-

ence on 5 . and hence on J T - T | , follows. For example,

the total free energy is not changed under a scale trans-

formation, so it has dimension 0. The free energy per unit

volume F thus has a dimension d . It follows that as

c
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The last line follows from the definition (1.4) of the specific

heat exponent a,

Another example is the magnetization m below T .

Since m is the average spin density, it has dimension

- ( d - 2 + r j ) according to (4. 11). Therefore, for T -*• T ,
M C

by the definition (I. 1) of P .

Since, in the presence of an external field h,

m = -8F/9h» the dimension of h must be

For T = T , h j^ 0, we know that m is still finite. It can
c

depend only on some power of h since 5 is infinite. To
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make the dimension right, we must have

According to the definition of 6 (1.2), m« h , we have

dh
The dimension of h§ is zero; therefore we have

where ± refers to T > T or T < T and w are func-
c c ±

tions which have dimension zero. Similarly, the free

energy per volume F should take the form

Now we examine the assumption v = v' which led

to a = a' and Y = Y ' • At a fixed nonzero h, we expect

that F is a smooth function of T - T because the critical

point is at T = T and h = 0. Therefore, we write

c

c
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If v ^ v', it would not be possible for the T - T terms in

(4.23) and (4,24) to agree. Thus the assumption v= v' is

quite reasonable. We summarize the above results in

Table 4.1.

In order that (4. 21) is consistent with (4. 22), we must have

andwherefor

Note that

c
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3. DISCUSSION

The dimensional analysis given above is very ad hoc.

We know that when the unit of length is changed, all lengths,

large or small, are affected. Saying that only large lengths

are affected is clearly wrong; there must be something else

which we have missed if the above arguments are to have

Table 4. 1

Some consequence of the scaling hypothesis

§

-1

(a) Scaling Dimensions

a a(x) h
K K

1 - l + T i / 2 y C i - 2 + Ti) i ( d + 2 - f i )
& £t

F

d

(b) Scaling Laws

1 1
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meaning. This "something else" will be taken up when we

discuss the renormalization grcrap in the subsequent chap-

ters. For the moment however let us just check how the

consequences of the scaling hypothesis fit empirical data.

Using the available data listed in Tables 1. 2 and 1. 3,

some nontrivial checks can be made. For example, the

first three ferromagnetic materials in Table 1. 2 share the

same exponents within experimental error. Taking

Y = 1. 33, T| = 0. 07, we obtain v = 0, 69 using the first rela-

tion in Table 4. Ib. The rest of Table 4. Ib gives a = -0. 07,

8 = 0 , 37, 8 = 4. 6, which is in agreement with the data in

Table 1.2 to within 10%. From the data for the liquid-gas

critical points in Table 1,3 we obtain v = 0, 64 using

Y = 1. 20, n = 0. 11. Then Table 4. Ib gives a = 0. 08,

p = 0. 355, 6 = 4.40. Apart from a the agreement with

experiment is excellent.

Such agreement with experimental data must be

considered as a great success of the scaling hypothesis,

especially in view of the simplicity and the crudeness of the

hypothesis. A theory of critical phenomena would not be

satisfactory unless it provided a basis for understanding the

scaling hypothesis.



V. THE RE NORMALIZATION GROUP

SUMMARY

The renormalization group (RG) is defined as a set

of symmetry transformations. The motivation for the con-

struction and use of the RG is the same as that for other

symmetry transformations like translations and rotations.

We define the RG as essentially a combination of the

Kadanoff transformation and the scale transformation. The

physical basis for the essential ingredients of the RG and

alternative definitions are discussed.

1. MOTIVATION

The study of symmetry transformations such as rota-

tions, translations, and isotopic spin rotations, has proven

116
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extremely useful in various branches of physics. Many

fundamental concepts are associated with the symmetry

properties of physical systems — e.g., quantum numbers,

selection rules, and multiplicity of degeneracies. Experi-

ence shows that a set of symmetry transformations is use-

ful for those particular systems which are at least approxi-

mately invariant under symmetry transformations of that

set. For example, for an atom, one encounters a

Hamiltonian

where H. is invariant under rotations around the nucleus

and H. is a small perturbation. BL might be due to an

external magnetic field, or a quadruple field. The perturba-

tion is generally not invariant tinder rotations but often

transforms simply and can be classified according to the

representations of the rotation group. The machinery of

perturbation theory together with systematic symmetry

arguments (group theory) determines the general patterns

of atomic phenomena almost completely, without the need

to dig into the details of Hfl and HI .

1 1

0
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When the detailed dynamics of a. physical system is

too complicated or unknown, and there is no obvious sym-

metry, one then tries to construct or guess at some kind of

symmetry transformations. Hopefully certain patterns of

experimental data can be at least approximately interpreted

as consequences of the properties of the physical systems

under such symmetry transformations. Examples of the

success of such an approach are the isotopic spin rotations

and SU(3) in nuclear and particle physics.

Now we face a complicated macroscopic system

near its critical point. Naturally we ask: Under what sym-

metry transformations is such a system invariant, at least

approximately? It would be very nice to have a simple set

of transformations under which the system at T = T is
c

invariant [describable by some Hamiltonian like HA of

Eq, (5. 1)] and if T ^ T , only a small perturbation pro-

portional to T - T , although not invariant needs to be con-

sidered [like the HL term in Eq. (5,1)]. One would then

hope that somehow the universal critical exponents would

appear as symmetry properties, like the angular momentum

quantum numbers that come out of the rotation symmetry.



MOTIVATION

The fact that microscopic details seem to make very little

difference in critical phenomena, strongly suggests that the

observed general pattern should be interpetable as sym-

metry properties, even though it is not clear a priori what

the desired symmetry transformations are.

There has been some success in constructing the

desired transformations, although nothing as neat and

simple as the rotation group has been obtained. We shall

call the desired transformations the rj6n^rmalization_^groupt

abbreviated as the RG, There is no obvious motivation for

this name, but we shall see some justification for it at a

technical level later. There are many features of the RG

not shared by the familiar symmetry transformations. Its

application is not as simple as we suggested above. For

example, a system at a critical point will not be simply

invariant under the RG but will have certain special

properties.

2. DEFINITION OF THE RENORMAJLIZATION GROUP (RG)

There is room for a great deal of flexibility in defin-

ing the RG. There have been no clearcut criteria as to what

119
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the optimum definition should be, and there are mathemati-

cal ambiguities which have not been completely resolved.

So far various applications of the RG have indicated that as

long as certain basic ingredients are included in the defini-

tion, the physical results derived will not depend on the fine

details of the definition. We shall first illustrate these

basic ingredients by defining the RG in the simplest manner.

Variations and technical points will be discussed later.

Consider a set of probability distributions for the

d   dL /b random variables 0 , the block spins. Note that,

in general, to discuss transformations, we need to consider

a sufficiently large set of probability distributions and exam-

ine how each of them transforms to another. We need

labels, or parameters, to keep track of these probability

distributions and to formulate transformations. The choice

of parameters is to a great extent arbitrary. For simplicity

consider the set of probability distributions of the Ginzburg-

Landau form (2. 30) with h = 0,

x
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We assume n= 1 for simplicity. We can use the triplet of

parameters

to label the probability distributions. Different values of

parameters form a three dimensional space which we shall

call the pajrarogter space. Every probability distribution of

the form (5. 2) is represented by a point in this parameter

space. Any transformation taking a probability distribution

P to another P' is represented by a transformation of a

point u to another point U' .

Now we define a transformation R for any integers

in the parameter space to represent the transformation of

-1C -1C'
probability distribution P « e to P ' «e according to

the following steps.

Step (i): Apply the Kadanoff transformation K tos

K to obtain

12
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This is a coarse graining procedure as discussed in Chap-

"VL"
ter II [see Eqs. (2. 2Z}-(2.24)]. Now P" « e is a prob-

ability distribution for L /(sb) block spins defined on

blocks of size (sb). Each new block spin a is the mean

of the s old block spins and x is the mean of the s

position vectors of the old blocks within a new block. The

Kadanoff transformation (5,5) downgrades the spatial resolu-

tion of spin variations to sb . Note that as long aa we are

-1C*
not interested in variations within a distance sb , P* « e

is sufficient and is equivalent to P as noted in Chapter II.

Step (ii): Relabel the block spins a in 1C* [a] and

multiply each of them by a constant X to obtain
§

with

Clearly this step shrinks the size of the system by s, and

the block size sb is shrunk to b, back to the original size.

The Steps (i) and (ii) can be explicitly written as

x
d

x
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i.e., the same as (2.23) defining the Kadanoff transforma-

tion, except that a is renamed \ o , . Recall that
3C S 3£

-d NT*X d
s } 0" is the mean of s block spins in a new block

y y

centered at x „

Now we write V.' in the Ginzburg-Landau form;

blocks. The new parameters are identified as

and thus define R of (5. 4). The set of transformations
s

{R , s s l} is called RG, It is a semigroup, not a group,
S

since inverse transformations are not defined. It has the

property that

only if the factor X in (5. 6a) has the s dependence
S

The sum over x' is taken over
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where a is independent of s. This is because K K , = K ,r S S SS

[see Eqs, (Z. 23) - (Z. 26)], but X X / - X , only if (5. 11) is
S S SB

satisfied.

In short R is essentially a coarse graining followed

by a change of scale. There is no net change of the block

size b . The two steps are the basic ingredients of the RG.

They are suggested by the success of the scaling hypothesis

discussed in the previous chapter. We want to construct

transformations which hopefully can explain the results of

the scaling hypothesis. Therefore we want the RG to re-

semble a scale transformation. As we mentioned in

Chapter IV all lengths, large or small, are affected by a

change of scale and ignoring this effect on lengths shorter

than 5 was an adjboc approximation. If we take into

account the effect on all lengths, we shall never find invari-

ance under scale transformations even if § -* •» . The block

size will shrink, in particular. The coarse graining,

Step (i), serves the purpose of keeping the block size un-

changed. It has the effect of enlarging the block size and

s
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balances the effect of shrinkage due to the scale change of

Step (ii). The size of the system L changes to L/ = L/s

in Step (ii). However, since quantities of interest are al-

most always independent of L for L -*• <*> , we exclude L.

from \Jt. It thus appears possible, but not guaranteed, that

there are probability distributions represented by points

invariant under R in the parameter space. Such pointss

will be called fixed points of R and will play a major role
@

in all subsequent discussions. In general one needs to

adjust the factor X in such a way that R will have a
0 S

fixed point.

Note that additive constants in 1C and K' have not

been kept track of and are not counted as parameters in U

and n' . As far as the probability distributions are con-

cerned, such constants are of no consequence since the

probability distributions have to be normalized anyway.

However, if one wants to calculate the free energy, then

additive constants do make a big difference and we must

keep track of these constants. We shall return to this point

later in this chapter.
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Before proceeding further we need to answer an

important question. That is, whether K" of (5. 5) and hence

"K' of (5. 6) actually have the Ginzburg-Landau form taken

for granted in (5. 7). In general the answer is no, as we

shall see explicitly in examples in Chapter VII, The

Kadanoff transformation generates additional terms pro-

/
portional to o" . a , (o - a } Q , etc. In other words,

x   x x+y x

the Ginz burg-Landau form is not general enough and the

three dimensional parameter space is not adequate to repre-

sent probabilities involved in these transformations. We

need more parameters, i, e. , more entries in M- to specify

other kinds of terms in 1C. How to define the parameters

is to a great extent arbitrary and one is guided by considera-

tions of convenience and clarity. As an example we can

write

8 2 2
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and define

Note that odd powers of 0 will be present when there is

no symmetry under the change of sign of 0 (when there is
3£

an external field, for example). Generalization to n> 1 is

straightforward.

One hopes that in practical calculations with the RG,

only several entries in \JL will be needed to get a good

approximation. For example, in Chapter VII, we shall see

that when d is very close to 4, the Ginz burg-Landau form

itself is quite adequate,

One must not forget that R is simply a symmetry
s

transformation, like a rotation or translation. It repre-

sents a change of labeling or references, not any change of

physical content. The probability P' represented by

|-i' - R u is equivalent to P represented by n as far as
s

those spin variations which survived the Kadanoff trans-

formations are concerned. Average values calculated with

P' are simply related to those calculated with P, For

example

x



128 THE RE NORMALIZATION GROUP

since the 0 in P is renamed X a   in P'. Let us
X S X/S

write the correlation function in wave vector space circu-

lated with P as

It is the Fourier component of (o 0 )_ [see Eq. ( I . 11)].
3r£ 3£ T* 2" A"^

From (5. 14) we obtain

Note that under the replacement 0 -* X o / , the quantity
3C S 3C

is replaced by
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2 d
This replacement accounts for the X s in (5. 16). The

s

r̂*""™i ft j

sum b y can be thought of as J d x, which is
x

s f d x' (or s b y , taken over blocks in the volume

Equations (5. 14) and (5, 16) are simply the state-

ment that the average of the transformed variables over the

transformed probability distribution is the same as the

average of original variables over the original probability

distribution. This statement can be made for all symmetry

transformations. The usefulness of symmetry transforma-

tions will be diminished if a transformation is so compli-

cated that it cannot be made simply. This point will become

clearer when we discuss some specific applications of the

RG.

3. ALTERNATIVES IN DEFINING THE RG

Juet us mention some alternative definitions of the

RG.

The definition given above involves the combination

d
of s blocks to form a new block in the Kadanoff

d
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transformation. Instead of using discrete blocks, we can

use the Fourier components o, and carry out Step (i), i.e. ,K

the Kadanoff transformation, by integrating out 0 for

A/s < q < A [see Eq. (2. 24) ] . In Step (ii) we replace the

•» /^
remaining cr. by X s G , . Putting two steps together,

J& S 0-P*

(5.19)

It is possible, and in practice often desirable or

even necessary, to modify the definition of the Kadanoff

transformation at a technical level. This point will be

brought up in subsequent chapters.

The value of s can be any real number £ 1 in

using the Fourier components for carrying out the Kadanoff

transformation, while it must be a positive integer when

combining blocks. We shall see that, for the purpose of

application to critical phenomena, the useful property is

R R , = R , and it matters very Ettie whether the values
s s ss

of s are discrete or continuous. In fact, it is convenient

we have

q
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to restrict 8 to s = 2 , I = 0, 1,Z, 3, . . . and define

This definition guarantees R R , = R , . We can regard
s s ss

R7 as the "generator" of the RG. Once R, is worked out,
£* &

R can be obtained by repeating R- . Of course, setting
§ LJ

I I
a = 3 , R = (R ) would be equally acceptable. If R

S S i * ^5

I 1
is available, setting s = (1.5) , R = (R t ) will qualify

S A . !3

also. If R for an infinitesimal 6 can be conveniently

defined, then

is again a good: definition of the RG. The quantity T is

often referred to as the "infinitesimal generator" of the RG.

There is additional room for flexibility in Step (ii)

of the definition. In this step we replace 0 by X o , .
2C S 3C

a
The factor X must be of the form s in order that

s

R R , = R , is maintained fsee Eqs. (5. 11) and (5.6)1.s s ss

This way of performing Step (ii) will be referred to as
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linear and the RG so defined is a linear RG. Now if

we generate the RG by a generator R via (5, 19' ),

we can generalize Step (ii) for R_ by the replace-

ment

where f ( o / ) is a monotonically increasing function of 0 , .

The function i can be chosen to simplify practical calcula-

tions. If f ( a ) = Aa , with A = constant, then the RG is

a a
linear as previously defined with X = s , 2 = A. Other-

s

wise cr is replaced by a nonlinear function of a , . Thex x

RG so defined will be called a nonlinear RG. Note that for

a nonlinear RG» a relationship such as (5. 14) will be modi-

fied and in general more complicated. For example, instead

of (5. 14), we have

where f (0) is defined by

2

spin density d satisfies2
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and so on, (5. 23)

Here s = 2 , In subsequent discussions, the RG will

always be assumed to be linear unless otherwise stated.

4. CONCLUDING REMARK

It should not be forgotten that carrying out a sym-

metry transformation is not the same as solving a particular

model. We simply obtain an equivalent model with different

parameters. The RG is a set of symmetry transformations

operating on a space of parameters. The concepts of tem-

perature, averages, critical points, etc., play no part in

R . We have not yet mentioned how we can use the RG to
S

help us in solving physical problems. In the next chapter

we explore the connection between the RG and critical

phenomena.



VI. FIXED POINTS AND EXPONENTS

SUMMARY

We examine the connection between the mathematical

structure of the RG and features of critical phenomena.

Critical exponents are related to the transformation prop-

erties tinder R of points near a fixed point. If a certain
s

simplicity in these properties is assumed, the correlation

length 5 and assertions of the scaling hypothesis follow.

The critical behavior of the correlation functions and the

magnetization is discussed. The free energy is also

examined. The concept of the critical region is introduced.

134
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1. THE FIXED POINT AND ITS NEIGHBORHOOD

We mentioned in the beginning of Chapter V that a

particular set of symmetry transformations is useful if the

physical system of interest is at least approximately invari-

ant under that set of transformations. Therefore, we need

first to examine those points in the parameter space which

are at least approximately invariant under R , before we
s

use the RG to analyze critical phenomena.

A point U which is invariant under R , i.e.,

will be called a fixed point. It plays the role of the com-

pletely symmetric HQ of (5.1), Evidently if (6.1) is true

for any finite s > 1, it will be true for s -» °», since we

can repeatedly apply R .
S

Equation (6.1) may be viewed as an equation to be

solved for \i . It is not expected to have a solution unless

the value of a in X = s [see Eq. (5.11)] is properly
S

chosen. It is quite plausible that, when s -»• » , all factors

of a must delicately balance to achieve (6.1). Such bal-

ance may not be possible for an arbitrary value of a. We
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have no general theorem so far to tell us whether there is a

discrete, or a continuous, set of fixed points, or any fixed

point at all. Let us assume now that there is at least one

fixed point. We shall concentrate on a particular one with

a definite value for a .

We define the critical surface of the fixed point U

as a particular subspace of the parameter space. All points

U in this subspace have the property

We can imagine that R drives u to a different point. As
s

s increases, all points on the critical surface are eventu-

ally driven to (4 . For sufficiently large s, R ^i will be
s

in the immediate neighborhood of n .

So far we have assumed the existence of a (Ji and

that of a critical surface. Let us make further plausible

assumptions in order to get a more concrete picture of the

neighborhood of u .

For a point u near u we write formally
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where 6u is small in some sense. The equation y, = R (4
0

can be written as

/ 2
where 6|J, + u = u • We ignore terms of O{(6 j j ) ) in

computing S n ' , and R is thus a linear operator. If we&
f"K f }i

denote the a entry of u by |4 and the a entry of

LH = R u by |J, , then R can be represented by a matrix
s (X S

and (6. 4) is a shorthand notation for the equations

Now we have a linear symmetry transformation R . Our
s

experience in elementary quantum mechanics tells us what

we should do. Recall that, in atomic physics, where the

rotations are useful symmetry transformations, we deter-

mine eigenvalues and eigenvectors of the rotation operators.

The eigenvectors (spherical harmonics) are then used as a

set of basis vectors. The importance of these eigenvectors

L

L

a
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and eigenvalues in atomic physics is well established. Here

the analogous and natural thing to do next is to determine the

eigenvalues and eigenvectors of R .
O

Suppose that the eigenvalues of R are found to be

p.(s) and the corresponding eigenvectors to be e. . The

subscript j runs through a set of labels. If there are «

entries in u , the space of 6 p will be infinite dimensional

and there are then infinitely many eigenvalues and eigen-

vectors of R . Since R R , e. = R / e. , we must have
s s s j ss j

It follows that

where y. is independent of s ,

We now use the eigenvectors as a set of basis vectors

and write 6 u as a linear combination

By (6.8), (6,4) is thus

L

S

jj

L

j
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Clearly, if y. > 0, t,' will grow as s increases, and if

y. < 0, t ' will diminish. If y. = 0, t'. will not change,

The existence of one or more zero y. implies that there is

a continuous set of fixed points. In such a case we shall

simply concentrate on a specific set of values for those t.

with y. = 0, i.e., on one specific fixed point.

The vectors e. span the linear vector space which

is the neighborhood of |a , The subspace spanned by those

e. with y. < 0 is the part near u of the critical surface

defined by (6,2).

2. LARGE s BEHAVIOR OF Rg AND CRITICAL
EXPONENTS

So far no physical concept has entered into our dis-

cussion of the RG. We simply have defined R as repre-
S

senting some transformation of probability distributions.

Now we want to connect the RG to the real world of critical

j j

j j j j

j

j

j

j

j j
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phenomena,

Consider a ferromagnet at temperature T , The

probability distribution of spin fluctuations is given by

P{T) « exp[-H[0] /T], where H[o] is the block Harniltonian,

This probability distribution is represented by a particular

point which we denote by n(T,h) in the parameter space.

The entries of H(T, h) are parameters which depend on the

temperature T and the applied field h. They are smooth

functions of T and h because they are local properties of

a block. This point was discussed in Chapter II (see

Sec. II. 3). The critical point of the ferromagnet is given

by T = T and h - 0,

The fundamental hypothesis linking the RG to critical

phenomena is that u(T ,0) is a point on the critical surface

of a fixed, point u , i, &. ,

and n (T, h) is not on the critical surface if T ^ T or

h ^ 0. Here u is a mathematical object invariant under

the RG, and |j{T ,0) represents all the relevant physics of

spin fluctuations of a real material at its critical point.

c

c

c

c
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Qualitatively (6. 12) means the following. Suppose that we

look at a sample of ferromagnet through a microscope, and

that our eyes can see spin variations down to a siae b.

Thus R represents the operation of decreasing the naag-
s

nification factor by a factor s , i.e. , the sample seen

appears to shrink by a factor s . Of course, we assume

that the sample is sufficiently large so that the edges of the

sample will not appear in the view through the microscope.

The hypothesis (6. 12) states that if we decrease the mag-

nification by a sufficiently large amount, we shall not see

any change if it is decreased further.

For simplicity let us subsequently restrict our dis-

cussion to cases with h = 0. Thus there will be no odd

power of 0 in H[cr]/T and we can concentrate on the sub-

space of the parameter space representing exp(-K) without

an odd power of a in 1C. R U will stay in this subspace.
X S

Let M ( T ) denote u(T, 0).

Since u(T) is a smooth function of T, and |0.(T )

is on the critical surface, then for sufficiently small T - T ,

U(T) must be very close to the critical surface, and R u(T)
S

#
will move toward u as s increases. For large enough s»

x

c

c
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*
R u(T) will be in the neighborhood of (4 • But &s s -» » ,

S

*
R u(T) will go away from |j since u(T) is not quite ons

the critical surface. The manner in which R u(T) goess
*

away from n depends on the positive y.'s in (6. 10) and

(6. 11). Since we do not know much about the y.'s at this

moment, we need to make more assumptions. Suppose that

just one of the y.'s, call it y, , is positive. Then simplicity

results. For very large s , by (6. 11) M ' will be away from

* yl *
U like t. s e . If ja(T) is close to \s , we can write

For very large s , we have

where y» < 0 is the greatest of all other y.'s. Since t , (T)
£• j i

is a smooth function of T and vanishes at T = T , we ex-
c

pand it

j

j

j 1

1 1
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and assume A ^'0"J Note that eigenvectors are defined up

to a multiplicative constant. We can adopt the convention

that A> 0, i. e, , if A happens to be negative, we shall

absorb the minus sign in the definition of e. , Then we

have, for very small T - X ,

where we have defined

and the ± in (6. 16) is the sign of (T - T }. If u(T) is not

*
close to (a , the conclusion (6. 16) still holds as long as

U(T) is very close to the critical surface and R U ( T ) is
S

*
close to yt for some values of s . This is because there

is just one way (« g e ) to go away from (a and the

coefficient of s e.. must be proportional to T - T by

the smoothness argument.

c

1

1

c

1/v

1/v
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Now we apply (6, 16) to examine the temperature

and k dependence of G(k, u(T)) using the relation (5, 16}

and (5. 11):

Since this is true for any value of s provided s is very

large, we can set s = § to obtain

YZ
That is, when T - T is so small that O(§ ) can be

ignored, G{k, u(T)) is 5 times a function of §k.

This is just what the scaling hypothesis tells us if we

identify § as the correlation length and v as the same

v defined in previous chapters.

in cases where 1 - T {§ -* «), and k i 0, we set
c

s = 1/k in (6, I B ) to obtain

c
2a+d
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s

~Y2
For sufficiently small k the O{k ) term can be ignored

and we have

By the definition of r\, we see that

Setting k = 0 in (6, 19), we obtain, for sufficiently small

i T - T j ,

i

From the definition of y we get a previously obtained

scaling law

Now we generalize the above arguments to h ^ 0.

The field h appears as an entry in (a representing the

term
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of the block Hamiltonian. The transformation of h under

R can be easily worked out since (6,25), the total spin of
s

the system times a constant, is not affected: by the coarse

graining procedure of Step (i), the Kadanoff transformation.

Step (ii) changes a into

and thus (6. 25) into

where we have used the fact that \ = s , and
3

a =4 (2 - TI- d) from (6,22),
£»

Assume that ri is small; (6.27) shows that h '

grows as s increases. We can regard (6.27) as an in-

stance of (6. 11) with a positive y , Let us use the notation

and let e, be the corresponding eigenvector. Equation

(6.16) is now generalized to

x

h

1
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s

We can, use {6. 29) to examine the T and h dependence of

the magnetization m = (a ) , which we write as m(u(T,h)) .

By (5, 14), we have

For sufficiently small h such that O(h ) can be neg-

lected, we have

since

and to obtain

Finally,

x

-y2/yh



148 FIXED POINTS AND EXPONENTS

For small h and small T - T , we set a = 5 inc

{6, 30) and find

This result is consistent with the conclusion (4. 20), since

a = - — (d - 2 + TI ) is the same as -d of (4» 11), and d ofZ 0 n

(4 ,17) is the same as y. of (6.28).h

Before proceeding further, we should again like to

remind the reader that R only transforms the parameters,
s

playing a role analogous to that of the rotation operations in

atomic physics. The above conclusions on the dependence

of various quantities on T - T and on h are consequences
c

For very small such that is negligeble
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of the assumed properties of R for large s near the
s

fixed point. Note that these conclusions are drawn from

(6. 18) and (6. 30) with farther as sumptions which have been

implicit. Some of the implicit assumptions are incorrect

and therefore some of the conclusions are meaningless or

trivial. For example, (6. 34) is obviously meaningless for

T > T since we know that the proportionality constant

must be zero. The RG does not tell what the averages

should be. It simply relates one average to another calcu-

lated with different parameters. It does not tell us whether

m(u ± e ) of (6. 33) is zero or not. The conclusion (6. 34)

is based on the assumption that m(u - e.) "f- 0, and the
J2O(§ ) term can be thrown away. Likewise in (6. 23) the

RG says nothing about whether G(0, u ± e + O(§ )) is

zero, finite, or infinite. Additional information is needed.

3. THE FREE ENERGY

The application of the RG to the study of the free

energy is less straightforward. In defining our parameter

space, we did not keep track of any possible additive con-

stant to 1C. In defining R , we have also ignored the
S

c

1

1

1

y
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additive constant to "K ' produced by the Kadanoff trans-

formation. In the calculation of the free energy, such con-

stants do make a difference and must be kept track of. For

definiteness, let us follow the convention that ^[CT] is de-

fined to be zero for 0 = 0, i. e., to have no constant term.

Any constant added to K)[a] -will be written out explicitly.

With this convention, (B.6c) must be written as

-ALd

where e is simply the value of the integral with all

0 , set to zero.
x

Let us define 3(u) and ${|a') by

To relate ^(u ' ) to 3(u) we insert
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where

since X =s . Equation (6.40} relates 3((,i) and 3(n').
s

Note that A does depend on U and s , according to (6. 36).

Now consider the physical probability distribution

represented by U(T, h). Then the free energy per unit

volume is

Note that AT is the free energy per unit volume directly

contributed by fluctuations over scales shorter than sb,

Thus, for a fixed s. A must be a smooth function of T - T

in (6. 37), and then use (6. 36} and (6. 38) to obtain

From (6. 40) we obtain

c
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It is in fact independent of h since fa couples only to the

total spin, not to short scale variations. Thus if F(u(T t h))

is a singular function of T and/or h , the singularity is

contained in the first term of the right-hand side of (6, 42).

Now we apply (6. 29) to (6. 42), and obtain

For very small T - T , we again set s = ? and neglect
Y2O(? ) to obtain

where the functions £ are defined by

It would be aesthetically more pleasing if the terms

A + B were absent in (6.43) and (6.44). In fact, ignoring

A + B would give the "homogeneity property" of the free

energy that is taken for granted in most of the literature

on critical phenomena. However, the RG analysis leading



THE FREE ENERGY  153

to (6. 43) and (6. 44) shows that there is no reason to drop

A + B. We argued above that A ( T , s ) + B ( s ) is a smooth

function of T - T at a.fixed s. Now we have set
c

s = §cc | T - T | ~ V , it is not clear whether A(T, |) + B(|)

is a smooth function of T - T , The physical meaning of

A(T, §)T is the free energy of the modes with k > §~ in

-1 -d
the absence of the modes with k < § , while § f

is the free energy of modes with k < § . Thus we

expect that they are equally singular for large 5 .

Also,

according to (6. 41), is a singular function of T- T .

Therefore, it is necessary to examine more closely the

critical behavior of A + B . The singularity of the A + B

term was emphasized and explicitly demonstrated for the

n -*• <*> case by Ma (1973,1974a). The reader should be

warned that in many authoritative papers this term is simply

ignored.

Let us go back to (6. 40) and write, setting s = 2,

c

c
1

-1
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Apply (6.47) to 3UR U) and substitute it to the left hand
£t

side. We obtain

Repeating this I times, we obtain

I *for s = 2 . Thus we have found

If we have an RG with continuous s , (6, 51a) can be ex-

pressed as

*
This formula was studied and used in numerical work by

Nauenberg and Nieuhuis (1974). See also Nelson (1975).
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for small Ai . We can regard (6. 48) as (6. 52} with Al = 1.

Note that A(u, 1) = B(l) = 0. Equation (6.51) expresses

A4-B in terms of A which has no explicit dependence on s.

Its s'dependence comes in only through R ,^i.
S

What we need is A(U(T), |) + B{§). The easiest way

to see its critical behavior is to differentiate it with respect

to §. From (6. 51b), we obtain

Clearly, A + B is just as singular as §" f in (6.44). If
Yz

we ignore O(§ ) and integrate (6. 54) with respect to t
1 ,

we obtain
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where £ , f are effectively constants. Substituting (6.55)

in (6.44), we obtain

2 Z
Since j t . | « | T - T | and the specific heat C is -T9 F/8T ,

we obtain, for \ T - T | -* 0 and h = 0 ,

This result agrees with that obtained from the scaling

hypothesis.

The reader might wonder why there are these un-

pleasant terms A(T, £)T and B(§)T in (6.44) for the free

energy while there are no such terms in (6. 19) and (6. 35)

for the correlation function G(k) and the magnetization m.

The answer is that G(k) = < Jcf j } and m = (a > =
& X

L. ̂ t̂ v-n are average values of long wavelength
K K —; U

(small k) Fourier components of the spin configuration.

The Kadanoff transformation, Step (i) in defining R , doess

not affect these Fourier components, and Step (ii) is just a

o
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scale transformation. On the other hand the free energy

involves all Fourier components directly. Complications

like the A and B terms in (6.44) are to be expected. In

fact, if we had used a nonlinear RG, there would have been

extra terms in (6. 19} and (6. 35) as well. This point will

come up again. There are quantities besides the free

energy which involve o, with large k as well as small k.
IS.

They will also come up in later chapters.

4. CRITICAL REGION

In deriving the leading singular T, h, k dependence

of various quantities of (6. 19), (6.20), (6.23), (6.32),
yz

(6.34), (6. 35) and (6.44), we dropped terms of O(s ) with

-1 - l /Vh
s = 5 > ^ °r h • Dropping these terms allowed us

to set R n(T,h) on the plane through n spanned by e,
S X

and e, [this is clear in view of Eq. (6,29)] and the results

(6. 19), ... (6. 44) follow. The critical region in T - T is
yz

defined as the range of T- T over which O(5 ) is negli-

gible. Likewise the critical region in k is the range of k
-y2

in which O(k ) is negligible, and similarly for the criti-

cal region in h.

h

c

c
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The relevant question to answer for determining the

size of the critical region is how large the minimum s

roust be so that R u(T, h) is well approximated by
s

(j. ± (s/§) e, + hs e, . The answer depends on twoI n

factors: (a) How far p(T,h) is away from the fixed point.

The farther away it is, the larger the s needed for R to
S

bring it in. This of course depends on the details of H(T, h),

i.e. , on the details of the block Hamiltonian for the particu-

lar system of interest, (b) How fast R can bring ^(T,h)
S

yito the e,e, plane, i.e. , how fast s vanishes as s in-
J2

creases for y. < 0. The term s is the slowest term

since by definition y? is the least negative among y, < 0,

Clearly the more negative y» is (i.e., the larger | y, | is)
Yz

the faster s vanishes, and the smaller is the minimum

required s .

Without making reference to any specific system, we

cannot say much about factor (a). Let us simply estimate

the minimum required s from factor (b) by saying that

1/v
yh

1 h

j

2 j

2 2
2
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Thus the critical region in T - T is given by

i / |y z l
5 > const, 10 , i. e.,

The critical region in k is given by

and that in h is given by

The "const. " in (6. 48) - (6, 50) depends on factor (a), i. e. ,

details of the specific physical system of interest.

5. SUMMARY AND REMARKS

In this and the previous chapter we have set up the

scheme of the RG for analyzing critical phenomena. The

main motivation behind the use of the RG is the same as

that behind the use of symmetry transformations in various

fields of physics.

We have the picture of a parameter space in which

c
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*
we locate a fixed point n , which is invariant under the RG.

The fixed point sits on a critical surface. The RG trans-

formation R drives any point on the critical surface

*
toward |a , For a point not on the critical surface but very

close to it, R will first drive it toward |a but eventually
s

will drive it away from yt as s -* <*> , This mathematical

scheme makes contact with the physics of critical phenom-

ena through the hypothesis (6. 12) that the point in the

parameter space representing a system at a critical point

is on the critical surface. By smoothness arguments, this

point will be very close to the critical surface if the system

is near the critical point. Critical phenomena are thus re-

lated to the properties of R near the fixed point. In

particular, critical exponents are related to eigenvalues of

the linearized R near the fixed point.

L
The linearized RG transformation R operating in

S

* Ti-
the neighborhood of \i has eigenvalues s . If only two

of the y. are positive, called y1 and y, , then (6.29) and

various assertions of the scaling hypothesis follow. The

exponent v is identified as 1/y. , and y, is related to f\

by (6.28). Of course we have not exhausted all the

s

s

s

j 1 h

1 h
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consequences of (6.29).

The universality of critical exponents appears in a

very natural way in this scheme. The critical surface is

expected to be a large subspace of the parameter space.

We expect that many different materials at their critical

points can be represented by different points on the_ satae

critical surface. Since critical exponents are properties of

R in the neighborhood of the fixed point, all these mate-
S

rials will share the same critical exponents.

Thus the important task is to classify and analyze

all possible fixed points and associated critical surfaces

and exponents. Then given any material near a critical

point, all we have to do is to work out its block Hamiltonian,

determine the representative point in the parameter space,

and see which critical surface it is on or close to.

Rigorous mathematical work on the RG has been

lacking. Precise numerical work has been attempted only

quite recently even though the first RG analysis of Wilson

(1971) was done numerically. We shall not discuss numeri-

cal techniques here nor attempt any rigorous proof of prop-

erties of the RG. To substantiate and clarify the
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mathematical picture of the fixed point, critical surface,

etc. we shall discuss a few simple approximate RG analyses

in the next two chapters. These analyses will show that this

mathematical picture is not fictional, and the various

assumptions we made above seem to be correct. There are

fixed points with more complex structure than the kind we

discussed above. For example, for & "tricritical11 fixed

point, there is one more positive y, other than y and
yh-



VH. THE GAUSSIAN FIXED POINT AND FIXED
POINTS IN 4-e DIMENSIONS

SUMMARY

In this chapter we first discuss the Gaussian fixed

point and the linearized JRG in its neighborhood as a simple

illustration of the ideas explored in the last two chapters.

The mathematics is quite simple and allows us to clarify

some definitions as well as point out some ambiguities.

The Gaussian fixed point provides a description of critical

behavior for d > 4. Then the case d = 4 - e with small

e > 0 is discussed. In addition to the Gaussian fixed

point, there will be a new fixed point, which is determined

to O(e). The calculation involved will be presented in

detail in order that the reader may see the various unde-

sirable complications as well as the nice simple results.
163
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1. THE GAUSSIAN FIXED POINT

We begin with the Ginzburg-Landau model for n-

component spins in d-dimensional space. For many subse-

quent discussions and calculations, it is more convenient to

use the wave vector representation. Let us write down a

few formulas for easy reference and to fix the notation:

where all wave vectors are restricted to less than A . We

define our parameter space as the space of p,,

and use the definition of M.' = R (J. with a sharp cutoff
S3

given by (5. 19), namely
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Here 1C' is defined to include no additive constant. The

additive constant generated by the integral over /do. is

ALd.

Now we must face the task of performing the integral

in (?. 3). If u = 0, then the integral is very simple because

each a. has an independent Gaussian distribution

1 7 "? \
exp f- -s (r -f-cq ) I a. I I . The integration over do.

* \ 2 o ^ ' iq ' / iq

will contribute to AL, the amount of the free energy of

the mode i, q. If u^ 0, the integral immediately becomes

very difficult. To avoid mathematical complications at

this early stage, let us for the moment look for fixed points

with u = 0. It turns out that there are such fixed points and

we can illustrate a few important concepts with them.

Assuming u = 0, we perform the integral in (7, 3) and make

the replacement o. •* s a , to obtainr k sk

iq

iq

1 n/23
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Clearly, Eq. (7. 4) has the same form as (7. 1), with

replacing r and c, respectively. Therefore

When we choose T) = 0 we find the fixed point

This is called a Gaussian fixed point. The value of c is

arbitrary. We can always choose the unit of 0 so that c
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assumes any positive value. This fixed point represents

the probability distribution exp(-K ) ,

(7.7)

Clearly, (7.5b) shows that by setting T) = 2, we

obtain another fixed, point

Here the value of r > 0 is arbitrary and we can choose

the appropriate unit of a so that r =1. In analogy with

Eq. (7.7), we have

*
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There ie still another fixed point like (7.9) except

that r < 0:o

where 0 means a very small u to keep the probability

normalizable. In analogy with Eq. (7.9) we have

where u = 0 .

The physical meanings of the above three fixed

points are very different. Equation (7. lOb) describes a

situation where each block spin is independent of all the

other block spins. Each block spin tends to have a large

value since u is small. If c = 0 , a uniform magnetiza-

tion results. This describes a system far below T ,

Equation (7. 9) describes a situation in which each block

spin has a Gaussian distribution and is independent of all

other blocks. This is the situation at very high tempera-

2
tures. Recall that (70) measures the coupling between
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neighboring block spins. As (7.7) shows, U describes

the limit of strong coupling. That it reflects the properties

of a critical point for d > 4 will become clear later. Let

us proceed to study R operating in the neighborhood of
0

*P0 •

2. THE LINEARIZED RG NEAR THE GAUSSIAN
FIXED POINT

As soon as u becomes nonzero, the quartic term

in 1C makes the integral of (7. 3) very complicated. Since

we are interested in the linearized R , the algebra is still
s

not too bad. The following procedure for obtaining R is
S

instructive and can be generalized and applied to other

kinds of fixed points. We go through it in detail as an

exercise. We write

where A"K» ATC', and AA are regarded as small quanti-

ties. Substituting (7. 11) in (1. ?) and expanding these

small quantities, we obtain the first-order terms

o

L
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where

which means averaging over 6 , i. e., over <3 ,

A / s < q < A, with fixed o , k < A/s. Equation (7. I Z b }

is the linearized Step (i), i. e., the linearized Kadanoff

transformation.

Before proceeding, we remark that in general one

can break 1C into two pieces in any manner

and expand (7.3) to obtain

q

K
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and the subscript c means taking the cumulant. The first

two cumulants are

For (7. 12), we have taken 1C = 1C .o

Equation (7. 12) gives a convenient formula for find-

L *
ing R , if 1C is already known. For our Gaussians

* c f d 2
fixed point, "JC is simply — / d x ( 7 0 ) and

where

2
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To evaluate the averages over <t , let us separate

<t from 0 by defining

We need to evaluate (o ) and (a ) over 4 keeping 0'

fixed. We obtain.

since (rf) =0, The average (af ) is over the independent

Gaussian distributions for 0. and is easily done. Note*q
that (a. ff. / > = > & . . 6 / <a . a. > . We have, squaring*q n y -q q iq i-q
(7. 16c), and then applying (7. 7),
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where

Here K, is the surface area of a unit sphere in d-
d

dimensional space divided by (2 f f ) .
A

Now (0 ) is given by

173



174 THE GAUSSIAN FIXED POINT

The average in the third term is

The last term of (7,20) is left as an exercise for the

reader:

Substituting (1, 16d) and (7.20) in (7. 15), then using the

results (7.17), (7.21) and (7.22), we obtain
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Now we have to make the substitution a, ->• so in (7.23),
J& SKI

As we noted much earlier [see (5, 6) and note \ =
H

s with T) = 0] , this substitution is the same as

175

Substituting (7.25) in (7.23), we get
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This completes the formula for R within the parameter
0

#
space of n = (r , u, c) near \i = (0, 0, c).

We can represent (7.26) by the matrix equation

where B = {=• 4 I) n /n. The eigenvalues of R arev £ / c s
2 4-dobviously s and s , The eigenvectors are

In the language of Chapter VI, (7.26} gives the expo-

nents
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The conclusions concerning critical behavior are

valid provided y_ < 0. However, Eq. (7,29) shows thatc*

this is possible only for d> 4. Otherwise, y, > 0 and
Lt

the picture given in Chapter VI is not valid. We say that

*
In Fig, 7.1, we show the fixed point (i and the

orientations of e, and e~ , The arrows show the direc-
tion of R H as s increases. For d < 4, there is no

0

*critical surface for \i , For d > 4, the critical surface

is the line along e_ , Any \i on this line is driven toward
*

(a by R , as shown in Fig. 7. la. The equation for the

critical surface is given by t =0 , with

In the neighborhood of (j. , we get
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Figure 7.1. The Gaussian fixed point r **" = 0, u = 0, and
the eigenvectors e^ and e£ of Rg . The
flow lines and arrows show how RSU moves
as s increases, (a) d < 4. (b) Z < d < 4 .

Here we have added a new direction e, in the parameter

space to account for the presence of a uniform magnetic

field h. The transformation of h under R is trivial
s

and was given before by (6.27):
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3. RELEVANT, IRRELEVANT, AND MARGINAL
PARAMETERS, SCALING FIELDS, AND
CROSSOVER

Let us digress to introduce some terminology which

is now standard in the literature.
Yl yh

The parameters t' = t.s and h' = hs dis-

cussed above grow as s increases (since y.. , y, > 0).

They are called relevant parameters with respect to the

4-d
Gaussian fixed point. The parameter u = u s dimin-

ishes (for d> 4) and is termed irrelevant. The parameter

c' = c does not change and is called marginal.

In general, relevance is defined with respect to a

fixed point. If R drives a parameter toward its fixed
S

point value, that parameter is irrelevant. If R drivess

it away, it is relevant. If R does not change it, it is
s

marginal.

According to the discussions of Chapter VI, only

relevant parameters are relevant to critical behavior.

There are, however, cases where irrelevant parameters

play very important roles in critical exponents. We shall

see an example shortly.
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The concept of the scaling field is very useful.

Scaling fields g.(n) are special functions of the parame-

ters having the following transformation property

For (J. very close to |4 , g. can be determined by deter-
L.mining the eigenvectors of R . I n facts

See (6, 9) and (6. 11) for t. . The scaling fields are natural

extensions of t. . We call y. the exponent of g, . Clearly

the scaling fields form a set of convenient parameters.

Also, g, is relevant, marginal, or irrelevant according

to whether y, is greater, equal to, or less than zero.

We can regard 3C as a function of the scaling fields.

Near the fixed point, we can expand 1C;
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The variable 8. is again termed relevant, marginal, or

irrelevant according to the sign of y. . We can use the

scaling fields to obtain a general definition of &, :

*
which is meaningful for (a away from n as well as in the

neighborhood of |a . The O.'s are called scaling vari-

ables or scaling operators. They are analogous to the

tensor operators of the rotation group. The scaling vari-

able associated with the field h is just the total spin

8, = - I d x a . That associated with t, is, for the
h J 1

f d 2
Gaussian fixed point, S, = J d x a since t. is linear in

r for our model. Note that 6. must be defined with
o i

respect to a fixed point since g. is.

More generally, K may have, in addition to the

terms considered in the Ginzburg-Landau model, other

terms of various powers of 0 and gradients of 0 . For

example,
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Here we need to extend the parameter space and write

*
The Gaussian fixed point remains, in the sense that K

stays the same and |a * ~ (0, 0, c, 0, 0, 0), We obtain the
Llinearized formulas for Rs

where B, , C_ , D_ , E , E_ are constants depending on
0 £* £* X £*

n, d and A . The derivation of (7.40) is left as an
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exercise for the reader. The eigenvalues of E, are
S

Yi

8 , with the values of y. :

These values are simply those powers of s produced by

the replacement (7.25), and are easily obtained by inspec-

tion. Namely, for a given / t.D. d x in 1C, we have the
addition formula for y.

Thus, the more powers of o and y , the more negative

y. , and therefore the more irrelevant the corresponding

parameter. Clearly only r is relevant for d > 4. For
4> d > 3, u becomes relevant also. For 3 > d > 2, u,

o

turns relevant. For d < 2 , all are relevant except that c

is always marginal.

L
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The terras included in (7,38) are all invariant under

rotations in spin space and rotations in coordinate space.

One can of course add terms which are not invariant under

these rotations. The term -fa / d x 0 is the simplest

example. Here h transforms as a vector under spin rota-

tion. We can have parameters that transform as tensors

and other types. Such non-invariant parameters represent

anisotropic perturbations which will be discussed in

Chapter IX.

Conventionally, a fixed point is called unstable if

there are one or more relevant parameters other than

t. « (T- T ) and h. If there is just one more such param-

eter, e. g., the u for the Gaussian fixed point for

3 < d < 4 (ignoring anisotropic perturbation), the fixed

point is often referred to as a tricritical fixed point. If

there are two, it is called tetracrjtical.

For an unstable fixed point, there is one or more

grog8overexgone nt 0, associated with the one or more

relevant parameters, with y. > 0, defined by
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The formula (6. 16), which determines the critical behavior

implied by (J , becomes

1 |~ V
where we have set a = § = |t,| . One can define 0, by

vy = 0 if one desires. The crossover exponent simply
h h

tells how important t, is for a given t , The smaller

the t. , the more important the e. term.

4. CRITICAL EXPONENTS FOR d > 4

Now we have v = 1/2, r\ = 0, and y_ < 0 for d > 4,

The RG argument of Chapter VI gives
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The value of (3 and that of 6 here do not agree with those

given by (3.58) obtained by Gaussian approximation,

although the rest of the exponents agree. We expect that

the Gaussian, approximation, which is based on the assump-

tion of small n, will be valid, since, near u , u iso

small. In fact, (7, 45) is correct and consistent with the

EG. The P and 8 given by (7.44) are wrong. The reasons

are as follows.

The RG arguments lead to Eq. (6. 30), which can be

written as

SINCEY1=2, Y2=4-D AND YH = 1 + D/2. iF WE SET H=O,

S=S = /T1/-1/2, TGEB WE GET (6.33), which is



CRITICAL EXPONENTS FOR d > 4 18?

If we neglect the t.. dependence of the last entry, and

assume m(=t 1,0,0) = constant, we get m« |t j
and thus the P given by (7.44). However, it turns out that

the last entry is important and m(± 1, 0, 0) is meaningless.

In fact, Gaussian approximation gives m proportional to

u for t. < 0 and u cannot be neglected. Equation

(7.46b) and the fact that m(t , Q,u) « u" imply that

i.e., p = 1/2, as (7.45) says.

If we set t1=0, s = h"(d/2"fl) in (7. 46), and
-1/3

again notice that m « u for t, =0, we find 6 = 3 .

The Gaussian approximation is consistent with the RC for

d > 4. One just has to be very careful. We emphasize

again that the RG provides no explicit solution of the model.

We can only deduce transformation properties. The in-

formation that m « u for t^ < 0 and m « u

for t. = 0 is not provided by the RG. It is provided by
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explicitly solving the model. The solution by Gaussian

approximation happens to be adequate. Note that u is an

irrelevant variable, yet it plays an important role in deter-

mining critical exponents. The fact that m must be pro-

portional to some inverse power of n for T •& T is a

characteristic of the Ginz burg -Landau form of 1C. The

quartic term, which is proportional to u, is needed to

keep m finite. If u is zero, then m -* •» ,

5. THE EG FOR d= 4-e AND FIXED POINTS TO O(e)

The Gaussian fixed point becomes unstable for

d < 4. In order to search for a stable fixed point for d = 3,

we can no longer regard u as small, and the task of per-

forming (7.3) becomes difficult. Fortunately, we can still

learn a great deal about the stable fixed point by studying

the RG for d very close to 4. It turns out that the stable

fixed point lies very close to \i if d is less than but

very close to 4, One might think that this should be obvi-

ous by continuity. Since the stable fixed point is at

r = u = 0 for d i 4, it must be close to (0, 0) for

d = 4_ e, with small e > 0. Such a view is incorrect since
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the Gaussian fixed point n remains a fixed point, al-
though becoming unstable, for d < 4. There are now two,

not one, fixed points for d< 4, The stable one is new,

and not a continuation of the Gaussian fixed point from

d * 4,

It tarns out that for d> 4 there is another, al-

though unphysieal, fixed point with u < 0. The new fixed

point for d < 4 can be viewed as the continuation of this

unphysical fixed point. As d is decreased from above 4,

u moves toward 0. This unphysical fixed point and the

Gaussian fixed point merge as d -» 4 . As d is decreased

below 4, u becomes positive and the fixed point emerges

as a physical fixed point. At d=4, the two fixed points

coincide. Some strange critical behaviors appear as con-

sequences of such "degeneracy" of fixed points. This is

why d = 4 is not a very simple case for studying critical

behavior.

The valid reason for expecting that the stable fixed

point, if any, should be close to jj, for very small e is
4-d ethe following. The growth of u' = s u = s u as s in-

creases has to be held back by nonlinear terms so far not
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included in this linearized equation. For small e , the

growth rate is very small. It would take only a small non-

sjc
linear term to hold it back. Therefore u must be small.

Perhaps this idea can be seen more easily if we write a

differential equation

£
which is equivalent to u' = s u. To hold back the growth

rate e u' , an additional term is needed in (7. 48). The

2
lowest nonlinear term should be proportional to u' :

where g is some constant. To get a fixed point, we set

* * 2 *
eu - gu • = 0. If g < 0, we still have just u = 0

;'•"

(u' < 0 excluded). If g > 0, we have

in addition to u = 0 . Thus ur is small for small e .
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Of course, we don't know g yet. If g = O(e), the above

argument won't work. We have to calculate g explicitly.

The study of the RG for d = 4 - e initiated by Wilson

and Fisher (1972), and Wilson's subsequent method of e-

expansion (1972) have stimulated a great deal of progress

in the field of critical phenomena.

*
If there is a fixed point close to |a , we should be

*
able to locate it using the RG formula for |j close to |Ji

Linearized formulas are not good enough. We need to in-

clude the next order in u - u . To find the new formulas,
o

we utilize the expansion formulas (7. 13) choosing

*
We could also choose 1C = "K , the Gaussian fixed point

o o
2

Hamiltonian, and include r 0 in 1C . It makes no real

difference. The choice of (7.52) makes the intermediate

steps easier to follow. "K is proportional to u. Keeping

terms up to second order in 1C in (7. 13b), we obtain

1

1
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where V.' and A' are just those given by (7.4a) and

(7.4b), respectively, and

In these formulas, we have to write o + $ for o as

given by (7. 16) and then average over 4 keeping 0 ' fixed.

We shall restrict our attention to the case where u and

r are of O{e) and evaluate (7.54) and (7, 55) to an accu-
racy of O( e ). Then we shall be able to use the results to

determine the fixed point values r and u , if they are
of O(e), Since there is already u = O(e ) in front of

(7.55), it is sufficient to evaluate the integral with d = 4,

2
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r = 0, For (7,54) we need to evaluate the integral to first
o

order in e .

Let us go through the evaluation of (7. 54) and (7. 55)

carefully and in some detail because all RG calculations of

various models to O(e) must go through evaluations simi-

lar to this one.

The evaluation of (a ) has essentially been done.

It follows (7. 20) and (7, 21):
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where n Is given by (7. 18) and K by (7, 19).

When we substitute (7. 57a) in (7. 56) and then (7. 56)

in (7.54), we obtain

where C is independent of r and -a. Note that there is

no term in (TC ) proportional to (Va ' ) . Therefore c
is unchanged up to O(e), This means that

at least to O( e). We shall find that (90 ' ) will appear

in (7.55) and therefore r\ = O(e ). The formula for r iso

obtained after carrying out the replacement (7. 25) in

(7.57b)

c d

o
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where u D comes from (7,55), to be discussed later.

The first three terms In the square bracket are just (?, 26)

with d = 4-e , The r u In s and u D terms are new
o

nonlinear terms. As it turns out, C and D terms play

no role in determining the fixed point and exponents to O( e),

The u term in (7. 57b) is just that in the old 1C and

gives u' = s u. The nonlinear terms will come from

(7.55).

Now we proceed to evaluate (7.55), which is of

course much more complicated. First, we express

4 4
o - (o ) in terms of a' and d :
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After substituting this in (7.55), we have an ex-

tremely large number of terms, the collection, of which

becomes a very tedious task. The graph technique ex-

plained in Chapter IX can help us in sorting out terms and

writing down the integrals that we need to evaluate. Of

course, we do not need graphs to calculate (7. 55). We

can simply do it by brute force. It is tedious, but not diffi-

cult. The result is
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The function Qi(r) is given by

where J is a Bessel function. Intuitively, we expect

G(r) to fall off to zero very fast for r > s A because

G(r) contains Fourier components for q> A/s only, and

where
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we have the qualitative picture of making blocks of size

sA .  However,  G(r)  does not turn out as expected. In-

stead, it has a long oscillating tail arising from the Bessel

function in (?. 63b). This oscillating tail is a consequence

of the sharp cutoff in the q integral. It will be washed

out if we integrate r over an odd power of Q5(r), but if we

integrate over an even power of (&(r), we may run into

trouble, as we shall see later.

Term (a) in (7.61) is a. constant independent of a '

and is a contribution to A' . Term (b) has the form

a' (x) • constant and can be identified as a contribution to

r ' , i. e. , the u D term of (7. 59). The rest of the terms

in (7.61) involve c'(x) and o r ' ( y ) , and apparently cannot

be identified as contributions to r' or u' . However, we

note that only Fourier components with k < A/s are left

in 0' . Thus a ' (x) is not much different from o ' (y) if

j x - y j  <  s A  .  I f  t h e  f u n c t i o n  ( & ( x - y )  f a l l s  o f f  v e r y

rapidly for |x- y| > s A , as we expected intuitively,

then the integrand of (7.61) is small unless x and y are

within a distance s A . .Let us write cr'(y) = 0 '(x+ r),
r = y - x, and expand in powers of r:
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Substituting this expansion in (7.61) and integrating over r,

we get the so called gradient expansion for (7.61). The

reason for this gradient expansion is not that it converges

rapidly (in fact it does not), but that with its help we can

easily separate the part of (7.61) which has the Ginzburg-

Landau form as the lowest-order terms of the expansion.

We shall study such lowest-order terms first. The first

term of the expansion, i.e. Q*'(y) = o'(x) of (7.64), con-

tributes to (7. 61) the terms

where
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Note that (f) and (g) of (7. 61} do not contribute because

/ d ?
d r Qj(r) = 0. The quantity u D contributes to r ' ,

and Au to u' . The integral of (7. 67) is easily evaluated,

Setting d = 4 and using (7,63) for G(r), we obtain

The integral is more obvious in wave vector space:

Note that K = (Sir2)"1, and
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If we ignore the oscillating part of J ( Ar) and regard

J (Ar) as a step function 9(A - r), then J ( Ar/s) -
o o

J( Ar)~ 0(r - A ) 9 (s A"1 - r). We would still get the same

result as in (7. 68). Apparently the result is insensitive to

the oscillating tail of J ( A r ) .

Substituting (7. 68) in (7. 67), we readily obtain the

formula for u':

where the factor s is the result of the replacement (7. 25).

This is an important result. It shows that u' is deter-

2
mined to O(e ) by u alone. Before justifying this re-

sult [it should be recalled that we have not examined all

the terras in (7.61) and have only kept the first term in the

gradient expansion (7. 64)], let us examine the consequences

* eof (7. 69). We write u = u = u , and 1 +e in s for s in

(7. 69). We get



*
point H » there is the solution

$as was expected from {7, 51), We can then obtain r from

(7. 59) to O(e). Only the first two terms on the right-hand

side are needed. We obtain

is easily obtained by linearizing (7, 59) and (7. 69) in the

* *neighborhood of (r , u ). One finds
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with u* given by (7.70). Let 0ro = ro - r*o and
0u = u-u*.  The linearlized formula

Besides the solution u = 0, which is for the Gaussian fixed
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The intermediate steps are recommended as a simple

exercise. It should be noted that the C and D terms of

(7.59) are not needed in determining y , but the r u In s

term is needed. Without evaluating C and D, we know the
yl Y2B(s - s ) element of the matrix (7. 73a) only as

Our lack of knowledge of the O(e) term does not affect the
yl y2 JLdetermination of the eigenvalues s , s of R because

s

the lower left element turns out to be zero. This happy

situation reflects the fact that (7, 69) is independent of r ,
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The fact that y = - e is now negative means that
£*

the fixed point is stable. The stabilization is owing to the

nonlinear term of (7. 69). The Gaussian fixed point and the

new fixed point are shown in Fig. 7.2. The critical sur-

face is given by

*
Figure 7. Z. The Gaussian fixed point \i Q and the stable

fixed point (J* for d = 4 - e , e > 0.

which is accurate to O(e). In Fig. 7. 2 we also display the

"flow pattern" or "stream lines "which indicate how R
r 8

pushes various points in the parameter space.
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Now we have a complete picture to O(e) . Using v

given by (7.73), and that t) = 0, other critical exponents can

be obtained via the scaling laws discussed in Chapter VI.

The results are given in Table 7. 1.

*
The important role played by the parameter u - u

in the case d> 4 discussed earlier is not expected here.

For the Gaussian fixed point (d > 4) u is driven to zero by

R . Here u goes to u , a constant. The magnetization

Table 7.1

Critical exponents to O( e )
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m for T •& T is still proportional to some inverse power
* *. - e

of u, but not u -u . Ignoring (u - u ) s is reasonably

safe.

The important concept of critical region was dis-

cussed near the end of Chapter VI. The size of the critical

region depends crucially on y , which measures how fast
£*

*
R \i moves toward |4 as s increases. Since y, = - e , .

§ £•»

*the motion toward (a is very slow for small e . This is

what is often referred to as the "slow transient" behavior

of R |4 for small e . Substituting y = -e in Eqs. (6,48)-
S Lt

(6.50), we obtain the size of the critical region. For

example, (6.48)

which is exponentially small for small e , This means that

T must be extremely close to T in order for us to ob-

serve the behavior described by the critical exponents of

Table 7.1.

In the above discussion we have freely exponentiated

the logarithm of s, for example replacing 1 - e In s by

«. g
s , to obtain exponents. How is this justified? Obviously

c
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it is not justified if s is very large. Large s is just

what we need to discuss critical behavior.

Such exponentiations are extrapolations. They are
Y •based on the form s of the eigenvalues of R .By

0

construction. R R / = R , . Of course, we have not8 S SB

constructed R to all orders in e , and therefore we car
s

not observe s , but only 1 -e In s. We are assuming

that if we constructed R exactly, obtained the eigen-S

values, and then expanded in powers of e , we would get,
72

to O( e ), 1 - e In s from s . We are making an approxi-

mation on the exponent. A small error on y, would of
yi

course produce a large error on s if s is very large.

6. EFFECT OF OTHER O(e2) TERMS IN R H
£3

So far we have taken into account only the first term

in the gradient expansion (7. 64). This amounts to ignoring

the variation of 0{x) over a distance sA . We must

now examine the higher-order terms in the gradient expan-

sion. We shall see from some of the unpleasant complica-

tions that our formulation of the RG is still primitive.
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The linear term in r will not contribute to (7. 61),

because G(r) = G(-r) and r will be integrated over. In

fact only even powers of r contribute. Let us collect

2
the contribution of r terms to (7, 61),

where (c), (d), (e) refer to those in (7,61). We have used

integration by parts to write f(x) V g(x) as - vf (x) • Vg(x).

Also we have replaced r rQ by 6 Q r /d on account ofa p CCP
the spherical symmetry of 0(r). Note that there is still

no contribution from, (f) and (g) of (7. 61) because

J ddr r2 G(r) = 0. In fact, J ddr rm G(r) = 0 for any finite

m because G(r) contains no Fourier component with

q < A/s .
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/
**3 t 'y

d x -T (va') Ac,

which contributes to c ' . Setting d = 4 in (7. 77c) and using

(7. 63b) for G(r), we obtain

where

Note that the r integral of (7,78) is independent of A .

The results of (7.78) and (7.79) can be roughly understood

as follows. If we ignore its oscillating tail, J (r) would

look roughly like a step function, i. e., J (r) ~ 8(1 - r).

Likewise J (r/s) ~ 9 ( s - r ) and J ( r / s ) - J (r) ~

0{r - 1) 6{s - r), which is nonzero only over 1 < r < s .
s

Thus the r integral of (7.78) is roughly J dr/r = In s.
1

The integrand of (7. 79) would be 0 ( l - r ) 9 ( r - s ) X

9 ( r - l ) 9 ( 8 - r ) = 0 in this rough picture. Therefore (7.79)

The (c) term of (7.77) has the form
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is due entirely to the oscillating part of the J fs and is a

result of the sharp cutoff in wave vector q . If we formu-

late the RG with a different kind of cutoff, (7 .79) will be

different, but the In s term would remain the same.

The transformation formula for c is

which is the same as (7,5) except for the Ac, Ac terms.

* Z
At the fixed point, u is given by (7.70), and 8rr is just

K . We adjust T) to remove the logarithmic term:

The Ac in (7. 80} is the contribution from extra terms

which we have not included in the Ginzburg-Landau form

of 1C. At the fixed point Ac must cancel the Q term so
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that c = c'. We now turn our attention to these extra

terms.

So far we have studied those terms in (7. 61) which

are of the same form as those in the Ginzburg-Landau

Hamiltonian. The (d) and (e) terms of (7.77) and all terras

from higher orders of the gradient expansion are not of the

Z 2same form as the Ginzburg-Landau 1C; (Va ) and
,2 , 2

a (90 ) of (7.77) are the simplest among them. In

other words, R does not preserve the Ginzburg-Landau
s

form. It generates additional terms of different form. We

need more entries in (j in addition to (r , u, c) in order

to define completely the action of R . Let us write

where n includes all additional entries needed, and "K
£f &

gives the extra terms specified by |a . The kind of terms

that are generated from "iC_T by R to O(e ) must be
Cji-i s
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included in J£ to start with in order to have a consistent

set of formulas for (j,' = JR (a to O(e ). In other words,
s

2 2 2 2 2 2
where the "higher gradients" include a (v 0) , (v a ) ,

etc., with more v's but always with four powers of 0 .

The last term has the form of (7. 61g). The function u (r)
6

has only Fourier components with wave vectors greater

than A. This term cannot be approximated by a finite

number of terms in the gradient expansion. The n_ in

(7, 82) must include v , v_, and all parameters specifying

the higher gradients and u,(r). Note that only the last
6

term of (7. 83} has six powers of o , The rest have only

four. It is consistent to take v , , v _ , . , . , u . as of O(e ).
I Z o

To this order, we need not include terras with more than

six powers of o . The reason is that to O( e ), the
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contribution of 1C to the transformed Hamiltonian 1C'
f-s

is just

which does not give any term with more than six powers of

2 *
0. To O(e ), the fixed point must include (a in addition

^ -S; %

to r and u , It is consistent to keep only terms in 1C

with six or fewer powers of 0 .

Our concern now is not the explicit values of

# # *
v , v ,.., ,u, (r), but the question of whether TrC, gener-
i £* D 4*

ates an extra contribution to Au of (7, 67), which is of

2 *O( e ). If it does, then our u previously obtained to O(e}

will be changed and, if so, we need to know whether the

values of exponents to O(e) will alter. [Do not forget

*
that to determine u to O(e), one needs some informa-

tion about R \i to O( e ). ] The contribution to Au froms

K _ is obtained from (7, 84) as the coefficient of

/
d 4

d x 0 ' in (1C > , In view of (1. 83), the gradient

terms cannot give such a contribution. The only possi-

bility is from the u,(r) term, which gives
o

(1/8)

o

2
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4 2
To get a' , we ignore the r in a' (x + r) and obtain

Since u, (r) contains Fourier components with wave vectors

greater than A, while 0&(r) contains only those smaller

than A, the r-integral of (7. 86) must vanish. We thus

conclude that (K 7) does not contribute to Au and our
£f

previous results to O( e ) are not modified. There is a

contribution from (1C.,) to r , but, like the uCe and
2 o

u D terras in (7,59), it makes no difference in our results

to O{ e). The reason is again that the equation for u '

* *
alone determines u , which in turn determines VT and

*
v_ without involving r . This completes our discussion

£* O

of results to O(e).

<TC ) will contribute to Ac of (7. 80), but we

shall not compute it. There are more serious problems

with the (d) and (e) of (7. 77). The integral
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actually diverges owing to the oscillating tail of J . The

square of the oscillating tail is always positive, which

makes the integrand go like rr ~ constant for r -» <*> ,

since J ~ r cos(Ar -rr/4). As a result, we get a
long-range interaction in 1C ' . This long-range interaction

is a purely mathematical artifact due to the sharp cutoff in

q-integration and has no physical consequence. To remove

it, we need to use a smooth cutoff, that given by (A. 19),

for example. The calculation of the RG with a smooth cut-

off is much more complicated, and has been done only so

far as verifying (7. 81) for the O{e ) term of f\.

It should be noted that even if we use a smooth cut-

off and thereby remove the infinities like (7. 87), the gradi-

ent expansion is still not useful for studying the RG except

for very special cases. The reason is that we need to keep

track of spin variations down to a scale of a block size in

order to define the RG completely. For the fixed points

and exponents to O(e) , we barely got by without getting
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into these troubles,

The reader very probably feels uneasy and dubious

because of these various complications which already appear

in O( e ). It seems quite hopeless to carry out R ex-
s

plicitly to O( e ). This feeling is entirely justified. In

fact, it is one of the purposes of the above lengthy discus-

sion to emphasize that our understanding and command of

the RG is still at a very primitive stage. A useful approxi-

mate method of carrying out R in general is still nots

available in spite of the rapid development of this field.

The RG carried out to O( e) for various other models,

some of which will be discussed in later chapters, accounts

for much of the success of the RG in studying critical phe-

nomena. In every case, it is carried through the way dis-

cussed above. The exponents have been calculated to

higher orders in e , without working the RG out to higher

orders in e , by the e -expansion method of Wilson (1972),

which we shall discuss in Chapter IX.

The reader undoubtedly wonders whether, as a tool

for computation, the whole business of the RG is worth-

while if it is so complicated. Might not one do just as well



EFFECT OF OTHER TERMS 217

by solving the model with a computer in the old-fashioned

way? Computer calculation has been necessary in carrying

out some approximate RG. However, let us emphasize

again that the difficulty of carrying out the RG is still much

less than that of solving the model because R is a trans-s

formation of nonsingular parameters and has much more

room for approximations. Some of the numerical work

will be discussed briefly in the next chapter.

We conclude this chapter with a remark on the impli-

cation of the simplicity of fixed points for d > 4 and for

d = 4 - e with very small e . The mathematical complica-

tion stems from the large and strongly interacting spin

fluctuations. This point was stressed in Chapter III, where

we also argued that the smaller d is, the more important

these fluctuations are in determining critical behavior.

For the models studied above, the interaction among such

fluctuations is unimportant for d > 4. The Gaussian fixed

point is stable. Points near this fixed point describe weakly

interacting spin fluctuations.

For d below 4, the interaction becomes important

and the behavior of long wavelength modes is strongly
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affected. One cannot use u as a small parameter -in solv-

ing the Ginzburg-Landau model for d < 4. The advantage

of the RC approach is apparent. We have been able to use

u as a small parameter in studying the RG for small e ,

and get the exponents. The distinction between the model of

interest and the fixed point must be borne in mind. The

strength of interaction of a realistic model is usually strong

and depends on the details of the physical system of interest.

The fixed point is a mathematical object defined by

* *
K (j = |a . The weakness of the interaction at the fixed

0

points discussed above certainly does not imply that in

general interactions are weak for d above or near 4. The

hypothesis is that even for a strongly interacting model

near its critical temperature, the RG will transform the

model into that described by a point in the neighborhood of

the fixed point.



VIII. RENORMALIZATION GROUPS IN
SELECTED MODELS

SUMMARY

We continue our study of the basic structure of the

RG. First we shall briefly touch upon the case of n -*• <*> ,

i, e., an infinite number of spin components. The RG can

be worked out exactly in this case. Then we introduce the

famous approximate recursion formula of Wilson (1971).

We shall derive it, state the approxirnations involved, and

then apply it to the n -*°° case as an illustration. The RG

defined for discrete spins will be introduced next. Numeri-

cal results of some two-dimensional calculations are

sketched. Questions involved in the definitions and the

truncation necessary for carrying out the RG transforma-

tions are discussed. The main purpose of this chapter is
219
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to point out some general features of the kind of approxi-

mations or truncations involved in all the RG analyses so

far. We want to make clear the fact that much remains to

be learned about some very basic definitions and some

fundamental aspects of the RG before we discuss its suc-

cessful applications in the next few chapters.

1. THE RG IN THE LARGE-n LIMIT

There is another case, besides the small e case

discussed in the previous chapter, in which fixed points

can be determined easily. That is the case of n -» » , i. e.,

an infinite number of spin components. The reason for the

simplicity in the large-n limit is qualitatively explained as

follows.

The terms in 1C which cause mathematical compli-

cations are the 0 and possibly o , etc., i. e., terms

which are not quadratic, in an isotropic spin model. For

2 n 2large n, or = To. is the sum of a large number of
<£_ 1

cations are the 0 and possibly o , etc., i. e., terms

fluctuation ~ lA/n . This turns out to be true for d> 2.

When such small fractional fluctuation is ignored, o KS(O )
2 2
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becomes a constant. The spin fluctuations become inde-

pendently coupled to an average field. This simplification

allows one to obtain fixed points and exponents without

much mathematical labor.

The values of n of physical interest are of course

not large, n= 1 for Ising systems, n = 2, 3, for XY and

Heisenberg models. There are certain crystal symmetry

critical points with order parameters of n = 4 , 8 (Makamel,

1975). The RG analysis for n ~» « serves as the basis for

the 1/n expansion of exponents. Such expansion will be

discussed, together with the e expansion, in the next

chapter, where perturbation methods will be explored.

For the purposes of our discussion the n -* <*> limit

means that we have finite but large n and keep only the

leading order in 1/n in calculations. Stanley (1968)

showed that the n -* *> limit produces the same thermo-

dynamics as the spherical model of Berlin and Kac (1952).

The spherical model is essentially a Gaussian model (of

any n):
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with a constraint

This constraint is an attempt to simulate the effect of re-

4stricting the magnitude of a , i. e. , the effect of the 0

term in the Ginsburg-Landau Hamiltonian. It is much

weaker. The 0 term restricts the value of a in every

block while Eq. (8. Ib) is only a constraint on the average

over the whole system.

In the following we shall briefly summarize what we

know about the RG in the large-n limit. An attractive fea-

ture of the large-n limit is that there is no restriction on d.

Some properties of the RG which are difficult to see in the

small- e case are easily revealed by the n -* <*> analysis.

Many of the scaling fields and scaling variables are avail-

able in the n -* •» limit but not easy to work out for small

e . We shall skip most of the details of the analysis, which

can be found in Ma {1973b, Sec. IV; 19?4a, Sec. IV). The

reader is cautioned, however, that these papers use a

different notation convention.

The Ginz burg -Landau form of 1C must be extended

4 2
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in order to describe the RG in the n -* » limit. It is suffi-

cient to use a parameter space defined as follows. Let

The parameter space is defined by values of the infinite set

Or, we can simply regard the parameter space as the space

of

i, e. , the direct product space of a positive real number

and the space of real polynomials.

An important function is
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We can also write (J = (t; c), since t contains the same

parameters as U does.

2
The meaning of t(cr ) is seen as follows. We men-

tioned earlier that the fractional fluctuation of cr is small

2 2
for large n. Thus 0 - (0 ) can be considered small

compared to (a } . Here ( . . . ) is the usual statistical

average over exp(-'K). Expanding U(0 ), we have

The first term is quadratic in o and the second term is a

constant. Thus exp(-IC) is approximately a Gaussian dis-

tribution for o, and t{(o )) plays the role of r in (7. 1).
2 2Namely, t{(a )) is the effective field seen by 0 . It

plays the role of the self-consistent field in the Hartree

approximation in atomic and many-body theory.

1 2 , 2
since — t(a ) = 8U/9CJ . Thus (8. 2} is, for large n ,

Ct
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The transformation U ' = R \i can be expresseds

through the function

which is determined by solving the equations

Here <t has the same meaning as in (7. 16} and {4 ) is

the same as in (7, 17) except for the extra t'/s in the

denominator. [Equation (8. 8} is the same as (4. 35) of

Ma (1973b). ]

Equation (8. 8) is more complicated than those for

the case of small e . An infinite number of parameters is

involved in t and t'. The determination of the fixed
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points and exponents is less straightforward. Let us sum-

marize the results.

(i) For d a 4, there is only the stable Gaussian

* 2
fixed point, t (0 ) = 0.

(ii) For 2 < d < 4, the Gaussian fixed point is still

* 2there but becomes unstable. The stable fixed point t (O )

can be obtained by solving the equation

where n is given by (7. 18). We can obtain

•«. *
Representative plots of Un> and t are given in Figs. 2

and 3 of Ma (19?3b), Note that for every positive value of

c there is a fixed point, just as in the cases in the previous

chapter. Some other properties are given in Table 8. 1.
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Table 8. 1

Some properties of the stable fixed point
of 2 < d < 4, n-*»

Critical Surf ace: t(n ) = 0

The scaling fields, defined by (7. 34), namely, those

functions g. of jj. with the simple property g.(R |Jt) =
3< I S

yig. (H) s , can be easily found using (8.8), First we solve

2 Zthe equation t = t(cr ) and get a = f{t). The function f

of course depends on JJ,. We also solve t' = t ' (Cf ) for

2 2a to obtain 0 = f ' ( t ' ) where f ' ( t ' ) is just f(t) with

|a',t' replacing jj,, t, respectively. From (8. 8a), we

obtain

Exponents:
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which implies

2 2
Here (tf ) is a function of t ' / s as given by (8. 8b).

Equation (8. 11) is just another way of writing (8. 8). The

transformation of f to f ' gives all the information con-

cerning R |a = \JL ' , Here t ' can be viewed as just a@

dummy variable. The fixed point f ( t ' ) is obtained by

sk SiS
setting f = f ' = f in (8. 11) and then solving for f . This

is easily done by expanding everything in powers of t' ,

and is left as an exercise for the reader. Subtracting the

fixed point equation from (8, 11), we obtain



WILSON'S RECURSION FORMULA 229

Then (8. 12) tells us that

The g 's are of course scaling fields. Within the parame-

ter space defined by (8, 2} with a fixed c, (8, 13b) gives all

exponents for the stable fixed point. Only y = d - 2 is

positive for 2 < d < 4.

2. WILSON'S RECURSION FORMULA

Wilson's recursion formula (1971) was the first

explicit realization of the RG and launched the whole new

theory of critical phenomena. Let us give a quick deriva-

tion of R and then discuss its consequences.

We again take 1C to be of the form (8. 2). The first

step is to write o = cr ' + $ as before and then to integrate

over jt , Again

m
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Here we take 8-2. In our previous discussions we used

a as integration variables in performing J 6 4 . The

advantage of using O is that the gradient term J (V$) d x
_™, «y «y

becomes simply a sum 2, q |0 ] , Each term in the
q i

sum involves only one q. The disadvantage is that the

quartic term and higher powers of o*(x) become compli-

cated products of O with different q's. These terms
involve ^(x) with the same x. Thus, while the plane

wave expansion (8, 14) is convenient for the gradient term,

the other terms would be more simply handled if d(x)

were expanded in more localized functions, Wilson's

approach is to expand sf (x) in a set of functions that are

the most localized functions one can construct by super-

imposing plane waves with A/2 < q < A , These are the

wave packets W (x) (which are just the Wannier functions
2

for the band of plane waves A/2 < q < A }. W (x) is very
55

small except for x near z within a distance ~ 2 A

The set of z's forms a lattice. We expand ${x) in these

functions and write
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/
-TC

6$ e

Now come the bold approximations:

(a) Ignpre the oyerlap between wave packet s.

This means that at any point x there is just one

W (x) which is taken as nonzero. We then have a picture
2S

of blocks. Each block has a W (x). The second integral
25

of (8. 18) becomes a sum over blocks

where

The set of wave packets is orthonormal. Again, we write

K as

The first integral does not enter in 
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is the mean square wave number of the packet W , and the
SS

t &integral J d x in (8, 19) is taken over the block z. The

multiple I 6$ is now a product of independent integrals

Tf /w. .
(b) Ignore the variation of <J' (x) within a block.

This means, for a given z, 0 ' fx ) is considered as

a constant,

(c) Ignore the variationjof [w (x)J_.

This means that W (x) is either I W (x)| or
z z

- | W (x)| , Note that W (x) is orthogonal to cr'(x), since
2s z&

it contains only Fourier components > A/2 while o '(x)

contains only those < A/2. Thus, within a block,

i. e., W (x) must be positive ( = | W | ) over a half of the
Z Z

block and negative (" - | W j } over the other half,
is

Under these approximations, the integral of (8. 19)

is simply



where 0 is the volume of a block. Note that | W (x) | «
25

Q since I W (x) d x = 1. The integral over d<t can
35 21

now be written as

WILSON'S RECUBSION FORMOLA 23S

where A is a constant so that U ' (0 ) = 0.

Taking the product over all the blocks, we get
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where Z H has been written as J d x. This completes
z

Step (i) of the RG, i, e., the Kadanoff transformation.

Step (ii) is j»st the simple replacement.

with 1(0) given by (8. 23). This completes an approximate

formula for R . Repeated application of (8. 25) generates

R = (RJ1 , a = 21 .
o £*

Clearly, to keep c' = c ^ 0, we need to choose

T) = 0. Formula (8, 25) can be simplified somewhat by

defining

We obtain



The parameter space is now simply the space of Q. Then

we have the transformation formula for Q under R :
£

This is the recursion formula of Wilson (1971),

In the above derivation we have taken n = 1. The

generalization to n-component spins with n> 1 is straight-

forward. The a and y in (8.28) are simply regarded as

denoting vectors. The dy in the integral is replaced by
n

d°y = it dy. .
i = l *

Now one needs to look for fixed points and expo-

nents. Numerical studies of (8.28) for d = 3 were carried

out by Wilson (1971), and subsequently by Grover (1972),

Grover, Kadanoff, and Wegner (1972), and other authors.
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and choosing the value of c such that
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Fixed points and exponents were found. Again, besides the

Gaussian fixed point Q = 0 , which is unstable for d < 4 ,

$
there is a stable fixed point Q . We shall not go into any

detail concerning the numerical program except to mention

*
briefly the following procedure for determining Q [ see

Grover (1972)]. This should give a rough idea as to how

numerical work can be done,

Clearly, any help from other sources of information

concerning Q will help to get the search procedure

*
started. Suppose that one gets a good guess for Q by

extrapolating from the small-e results. Call such a guess

Q , which is off by 6Q;

where R q -* 0, for large s, assuming y ^ » y » , . « . < 0.
S O ' Lt J

Let us expand 6Q in the eigenvectors of R , assuming
S

that 6Q is small.

l
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Now apply R_ to Q to obtain Q

If we knew y. , then

would, be Q except for the last term of (8. 33), which con-would, be Q except for the last term of (8. 33), which con-

tains no e . One can make an estimate of y by applying
R, to (8. 32) and dividing to obtain

Clearly, if we are lucky enough that t happens to be zero,
*

then we will get Q by applying R a few times. If we
are not that lucky, we need to remove the t..e term.

From (8. 29) and (8. 31) we obtain
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A rough estimate would be obtained by (Q_-Q1 )/{Q. - Q )

evaluated at some arbitrary value of 0 , Now we can use
/1 \ \ "*"Q with, this estimate of 2 as our new guess of Q^ ,

and repeat the above steps to improve Q to Q The
result of a lew iterations of these steps converges to Q ,

Wilson (1971) first obtained by numerical means

the fixed point and exponents (not by the procedure men-

tioned above). His results agree well with those calculated

by numerical work using the old fashioned series expansion

techniques. The important question is how good are the

approximations (a), (b) and (c), which made the simplicity

of the recursion formula possible. Clearly, the approxi-

mations are very crude. We know that the wave packets

must overlap in the coordinate space if they do not overlap

in the wave vector space. The variation of o'(x) over a

wave-packet size must be accounted for, otherwise T)

would always be zero. Also W (x) surely is more com-
z

-1/2 -1/2plicated than either +0 or -Q . Wilson (1971)
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discussed in detail the implications of-these approximations.

The reader is referred to Ms paper for the discussion.

Golner (1972) improved the approximations in many re-

spects. His results do not agree as well as those of the

unimproved recursion formula with the series expansion

results -(which are regarded as very accurate). This im-

plies that the improvements needed are more subtle than

expected and a deeper understanding of the original recur-

sion formula and approximations is still lacking.

Although Wilson's recursion formula has a dubious

accuracy, it has been the single most important and suc-

cessful formula. Not only did it start the whole new theory

of critical phenomena with numerical success, it also pro-

duced the first small-e results (Wilson and Fisher, 1972),

i.e., it gave exact results for the exponents to O(e). The

expansion of the recursion formula to O(e) is left as an

exercise for the reader. As an illustration, we shall in the

next section obtain exact results for the case n -»<*> using

Wilson's recursion formula. Thus, in both the case of

small e and the case of n -*••» , the recursion formula

gives exact results. This is indeed remarkable, especially
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since very little has been known exactly about the RG

besides these.

3. APPLICATION TO THE n -* * CASE

Let us see how the Wilson formula (8. 28) works for

the case n -»» . We write Q(o ) instead of Q(0) for

convenience. Hie dy in (8. Z8) is now replaced by d y .

Now we have

2Here a and

are of O(n), while 0 « y = O(l) since only one component

of y, i. e., that parallel to a , contributes to 0 • y.

Therefore (8. 28) gives
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2 2 2
where t(0 ) s 9Q{a )/80 . To the leading order in n,

we have

with y satisfying (8.38), i.e.,

For large n, the integrand is the exponential of a large

quantity, and thus peaks strongly at the maximum of the

exponent, which is determined by setting the derivative of

the exponent to zero:
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2
Solving (8.40) for y and substituting the result in (8. 39)

2
and then in (8, 28), we obtain Q'(0 ). It is convenient to

2express the recursion formula in terms of t'{o ) =

3Q'(a2)/8a2:

where (8. 41b) follows from (8.40) and (8, 41a). Equation

(8. 41) is an approximate form for the exact equation (8. 8),

To find the fixed points and exponents, we proceed

as follows: we solve 0 from t = t(0 ). We get 0 as

Likewise the transformed function t ' ( C T ) can also be

2solved for 0 :

From (8.41) we obtain

2 2
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which means, by the definition (8, 43),

This is another way of writing the recursion relation (8. 41).

Sj!

The fixed point is obtained by setting f ' = f = f in (8. 45).

One easily obtains

Subtracting the fixed point equation from (8.45), we obtain

and write
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Then it is obvious from (8.47) that

The exponents y thus agree with the exact results given

by (8, 13), although the detailed form of the fixed point is

different. The Wilson recursion formula thus gives very

much the same structure of JIG for the n -* « as the exact

formula except that the algebra is much simpler.

Evidently Wilson's recursion formula has in a very

crude way captured the essence of the RG. Attempts to

improve upon it have not been all that successful. Like-

wise, attempts to carry out the RG to the next order in e

or in 1 /n have met with a great deal of mathematical

complexity.

4. DEFINITIONS OF THE RG FOR DISCRETE SPINS

So far we have studied only models with continuous

spin variables. In Sec. II. 3, where we first discussed the
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coarse graining procedure, we pointed out that discrete

spins will become essentially continuous after coarse grain-

ing. The discreteness is washed out if we consider inter-

actions over a scale a few times larger than the unit cell.

However, discrete spins are far easier to study

numerically. It is possible to build into the RG a truncation

procedure such that the discreteness of the spins is formally

not washed out. There are many ways to truncate. They

simplify the EG greatly and have made possible many recent

numerical advances by many authors, e. g. , Niemeijer and

van Leeuwen (1973, 1974, 1975); Nauenberg and Nienhuis

(1974, 1975); Kadanoff and Haughton (1974); Wilson (1975);

and others. These numerical studies have given us impor-

tant insights into RG procedures in general as well as

specific numbers. Here we shall not discuss any details

of the numerical calculations, but only comment on the

basic setup and various unanswered questions.

A basic ingredient of the RG for discrete spins is

the truncation scheme illustrated by the following examples.

Consider a two-dimensional triangular lattice of

Ising (n= 1) spins as shown in Fig. 8. la. Each spin can be
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Figure 8,1. (a) Triangular lattice of Ising spins, Kj , K^,
Kj, h2 are interaction parameters of {8.53).
(b) Block construction used by Niemeijer and
van Leeuwen (1973, 1974).
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fl or ~l. A Kadanoff transformation can be defined by

forming blocks each of which contain three spins as shown

in Fig. 8. Ib and then defining a new block spin for each

1 2 3block. The mean of the three spins <J / , o / , a / in the
block r' can take four values, namely ±1, ±1/3, instead

of just ± i. Clearly, it is not convenient to use the mean

as the new block spin as we did before. One can force the

four values into two values by defining the new block spin

as

which of course is either +1 or -1. This is not quite the

same as the coarse graining we are used to. It can be

viewed as having an additional coarse graining in the spin

space. The RG of Niemeijer and van Leeuwen (1973, 1974)

is based on Eq. (8.51).

For discrete spins, it is convenient to use a parame-

ter space of
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with K. defined byi

where P[o', cr] is a product taken over the new blocks

where K, is the nearest-neighbor (nn) coupling parameter,

K_ is the next-nearest-neighbor (nan) coupling parameter,

and K is the "4 spin" coupling parameter, h is the mag-
netic field, and h » . . . are higher odd spin coupling

£*

parameters. Figure 8. la shows which spins are coupled

in these terms. There are of course more terms with

other coupling parameters. The RG transformation

R , u, = n' is then defined by
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The definition (8.54a) is of course a generalization of

(2. 23} or (A. 17) to the discrete spins. In (8.54) the con-

stant terra AL independent of a' is explicitly written,

Note that we need to shrink the new lattice by a factor //3

since one of the two terms is one and the other zero. It

follows that

The function p is a projector. It is one if the arguments

satisfy (8.51) and is zero otherwise. It plays the role of

the 6-function in (2. 23) for the continuous spin case.

Explicitly

Obviously,
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to obtain the same lattice spacing as the old one. That is

why (8.54) defines R r- . The whole RG is defined by

Note that there is no rescaling of the spin variable 0 in

contrast to the replacement O -* s 0 in the

earlier definition of the linear RG. Here the value of a is

always ± 1. No rescaling can be defined, nor is it neces-

sary.

When, we sum (8. 54a) over a' on both sides and

apply (8. 56), we obtain, after taking tihe logarithm,

where ja' = R /- |j and 2F is the free energy per volume,

Note that d = 2 here. Hie result (6.50) appEes here with

trivial modifications:
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I /2
where s = 3 . The first term can be dropped in calcu-

lating $ if I is chosen to be large enough.

The transformation formulas for various average

values are more complicated. One easily shows via (8,54)

that

which looks obvious enough in view of (8. 51). From (8. 60)

we obtain

etc.

where the 1 A/3 in G is again due to the shrinking of the

new lattice of blocks. We need to know how m(u ' ) and

G(r A/~3, n')» etc., are related to the corresponding
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quantities calculated with the original Hamiltonian,

m(|-t) = (0 ) , G(r, U ) = (<J 0 ) , etc. Because of the

nonlinear definition of the new block spin CT , in terms of

the old spins, such relationships are very complicated; for

example,

Neither can one simply relate G(r, \i) to G(r, (a'). This

difficulty will be discussed again shortly.

Similar constructions have been applied to discrete

two-dimensional Ising spins on a square lattice. Figure

8. 2a shows the formation of new blocks, each of which in-

cludes four spins. New block spins can be defined as in

(8.51)

except that special attention has to be paid to the cases

where the four spins sura to zero. One can arbitrarily

assign 0 , = 1 for the configurations shown in Fig. 8. 2b

and a' f = -1 for the inverse of these configurations, as
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Figure 8, 2. (a) Block construction on a square lattice,
(b) Configurations in a block which are
counted has having Q ' = +1, and
(c) Those counted as having 0' = -1,

shown in Fig. 8. 2c. Nauenberg and Nienhuis (1974) used

this block construction to define their RG.

Another construction (van Leeuwen, 1975) shown in

Fig. 8. 3 is more interesting. It takes five spins to make

a new block. New block spins are defined by

This block construction has the advantage that the spins on

one of the sublattices (labeled by a in Fig. 8. 3) and those

on the other (labeled by b) are not mixed, in contrast to
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Figure 8. 3, The block construction of van Leeuwen (1975).
The sublattices a and b are not misted.

the above constructions. This is very handy because both

ferromagnetic and antiferromagnetic critical points can be

studied by the same RG.

Relations similar to (8.60) - (8.62) can be derived

for RGs constructed with (8. 63) and (8. 64).

The renorraalization groups defined above have

achieved a great deal of success in getting good values of

critical exponents. In addition, Nauenberg and Nienhuis

(1974b) have used their RG to study the free energy and the

equation of state. Some of their results will be briefly

sketched later. On the other hand, these RG's suffer from
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the difficulty that some average values of interest, the

magnetization and the correlation functions, do not have

simple transformation laws. That is to say, the average

calculated with the original Hamiltonian cannot be simply

related to that calculated with the transformed Hamiltonian.

This is the price one pays for keeping the spins discrete by

a highly nonlinear procedure in defining the new block

spins, i. e., by taking the sign of the mean spin in a block

as the new block spin of that block. The new block spin

bears only a faint resemblance to the mean of the old spins

in the block. Consequently such RGs are not very good

representations of the coarse graining procedure which is

a basic ingredient desired in an RG. Since the physical

meaning of the new block spin is quite different from the

mean spin over a block, it becomes difficult to analyze

spin fluctuations in the original model with the transformed

Hamiltonian.

There are alternative definitions of the RG which

are formally free from such a difficulty while still keeping

spins discrete. They have been studied by Kadanoff and

Houghton (1975), and by Wilson (1975). These RGs are
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generally defined by (8. 54) with a p of the form

where the new spin a', is either +1 or -1, and t /[a] is

some linear function of the old spins in the block located at

r ' . Note that (8.65) is general and includes (8,55), (8.63),

(8.64) or any transformation satisfying (8.56) if we also

allow t /[cr] to be nonlinear in the old spin variables. To

make p a projector like (8.55), we have to make t ,[0]

1 2 3nonlinear, i, e., include the 0 , 0 , 0 , term. In allow-

ing p not to be a projector, we can no longer have a pre-

cise relationship like (8.55) or (8,64) defining the new

block spin in terms of the old spins. The EG is directly

defined in terms of p. At this moment, giving up a pre-

cise definition of a / sounds like a step backwards in the

effort to make 0' , a better representation of the mean of

old spins in a block. It may actually be the case. How-

ever, mathematically there is an improvement, as will be

seen shortly.

Let us give a couple of examples. The simplest

example is (Kadanoff, in Gunton and Green, 1973),



where r' are those points not slashed in Fig, 8,4, Here

each block has just two spins. The constant p is an adjust-

able parameter. It bears some resemblance to the parame-

ter X [see (5.6)], in defining the linear RG. One needs
©

to choose p properly in order that the right fixed point

can be found. The special choice p = 1 happens to be use-

ful for the study of the one-dimensional Ising model

(Nelson and Fisher, 1974). Note that for the special case

p = l , p = - 5 r ( l + C f / / o / ) is a projector, i. e., it is oneCt r r

if 0' , = O , and zero otherwise.
r r

Equation (8.66) defines (j.'= Rr=\i. The 4z

Figure 8. 4. Block construction by eliminating every other
spin.
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reflects the fact that the new lattice must be shrunk by a

factor of </Z to get back the old lattice spacing. Another

example is, for the triangular lattice, as shown in Fig, 8, 1,

where 0 , is the mean spin in the block r' . This implies

that

Equation (8.61) still holds even when p = : r ( l + 0 ' , t ,)
£* 2T 3T

is not a projector, as long as r' ^ r" » i. e., as long as we

restrict our attention to correlations of spins in different

blocks. For the case (8,66), we have, using (8.61),
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etc. ,

where u' = R /zf-l . Of course (0 O ) is not quite
A/3 r o H

G(r, |4) = (a a ) , But if we do not care about short-

range (over a, block size) variations of 0 , { 0 0 } is

effectively G(r, (Ji). Thus (8,69) and (8.70) show that

physical quantities of interest calculated with |a' are

simply related to those calculated with |4 , as they were in

our earlier study of the linear RG. These simple relations

are what we would expect in view of scale transformations

and coarse graining procedures. However, these appeal-

ingly simple relations are a bit deceptive and must be inter-

preted with caution. The reader must be reminded again

that they are not the results of defining the new spin as the

mean of the old spins in a block, but the results of the

mathematical simplicity of the transformation. As we

where (a' = R/-|i. For the case (8.68), we have
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mentioned earlier, the meaning of the new spin is even

more vague than that defined by (8. 51) or (8. 63).

5. NUMERICAL WORK ON THE RG FOR TWO-
DIMENSIONAL ISING SYSTEMS

The fixed points and exponents of the RG for dis-

crete spins defined above have been found numerically by

the authors quoted above. The exponents and other data

for the two-dimensional Ising model are known exactly

from Onsager's solution and provide a check for the numer-

ical RG results. So far the results reported all agree well

with exact results. However, there are still questions

which are unanswered. In this and in the next two sections

we shall attempt to give some qualitative discussion of what

is involved in numerical calculations and some of the re-

sults and unanswered questions.

In principle, there is an infinite number of parame-

ters in (4 = (K , K , K ,. .. ). If one starts with a H with
* £* -5

only a small number of nonzero entries, the transformed

|i' will have more entries. If the transformation is re-

peated, still more entries will become nonzero and
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interactions involving more and more spins must be in-

cluded in the Hamiltonian. It is clear that one has to trun-

cate in some way in order to carry out numerical calcula-

tions. The choice of a proper truncation scheme is a very

difficult problem which is still not well understood, So far

there have been a number of truncation schemes. We shall

briefly discuss the scheme of Nauenberg and Nienhuia

(1974) as an illustration. In their scheme, 16 spins as

shown in Fig. 8. 2a are analyzed. A periodic boundary

condition is imposed. One then carries out the RG defined

by Eq. (8, 63) on, this system, which is divided into four

blocks. It is sufficient to consider the parameter space of

The meaning of the parameters is given by (8. 53). Since

there are only four new block spins, 1C' can only have the

nearest neighbor K' , next nearest neighbor K ' , 4-spin

K' , magnetic field h' , and 3-spin h' coupling terms.
3 M

Thus \A* will have the same set of entries as jj ,

One then calculates R,(j = J J L ' exactly on the 16-

spin system, searches for the fixed points, linearizes R_
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near the fixed points, and obtains exponents. Note that

once the program for getting (a' from the input p is

written, one can forget about the lattice and the spins.

I
R , (s = 2 ), is obtained by repeating this program I

0

times. The free energy can be calculated using (8.59)

(with 2 replacing J~5). The first term of (8.59) can be

dropped for a sufficiently large I, The series is rapidly

convergent. The specific heat can be deduced from the

results for the free energy. Figure 8. 5 shows some

results of Nauenberg and Nienhuis (1974b). Table 8. 2

lists their results as regards the fixed point and exponents.

Other authors have used different schemes of trun-

cation, kept different numbers of coupling parameters, or

applied different numerical techniques. In ail cases, they

all get about the same answers for the exponents, within

~ 5% of the exact values. The number of spins involved in

numerically defining the RG is not many more than 10.

The reason for keeping only ~ 10 spins is that, to account

for all possible interactions among N spins, one needs to

N
analyze ~ 2 configurations. The task becomes formid-

able when N gets large.
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Figure 8.5. (Taken from Fig. 1 of Nauenberg and Nieuhuis
(I974b). ) Dashed curve, free energy from
OnSager's exact solution; dash-dotted curve,
exact energy; solid curve, exact specific heat.
The points are numerical results of Nauenberg
and Nieuhuis. K (the K| in the text) is the
nearest neighbor coupling parameter. All
other parameters are taken to be zero.
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Table 8. 2

The ferromagnetic fixed point and associated
exponents of the RG of Nauenberg and Nienhuis
U9?4b)

We have emphasized repeatedly that the whole pur-

pose of the RG is to study a transformation at a local level,

i. e., a transformation of interactions among only a small

number of spins. Thus one should be able to do the RG

analysis and obtain results of interest with a small number

of spins and coupling parameters. Numerical results have

qualitatively supported this conclusion. The nearest-

neighbor interaction K, has always been found to be the

most important one, and is the largest at the fixed point,

All other parameters are smaller by a factor of 4 or more.
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Besides exponents, other features of the RG have

also been studied numerically. For example, plots of

critical surfaces have been made by Nauenberg and Nienhuis

(1974a). One can thereby get a qualitative picture of the

global structure of the fixed points and critical surfaces.

We now give a brief sketch of the gross features of this

structure,

Let us keep track of only K. and K_ , i. e. , the

nearest-neighbor and the next-nearest-neighbor interaction

parameters. Assume also that there is no magnetic field

nor any interaction involving an odd number of spins.

Imagine that we define the RG for a two-dimensional

square-lattice Ising model with the block construction of

van Leeuwen (1975) shown in Fig. 8. 3. Note that the next-

nearest-neighbor interaction ( K _ ) operates only within a

sublattice, i. e. , between either the spins in sublattice a,

or those in subiattice b. On the other hand, the nearest-

neighbor interaction ( K , ) always involves a spin in sub-

iattice a and another in sublattice b. If K = 0, then the

sublattices become independent. The block construction in

Fig. 8. 3 does not mix the sublattices and would maintain
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this independence.

In Fig. 8. 6, we sketch some qualitative results,

which are explained below.

The (K.,K ) plane is of course a su-bspace of the
i £#

parameter space -of |J = (K , K ,.. , }. The point F is the

ferromagnetic fixed point. The line F'F K B is the criti-

cal surface associated with this fixed point. The point K

on this line is the Ising model with only the nearest-

neighbor interaction at its critical point. Points on this

Figure 8. 6. Sketch of fixed points and critical surfaces in
the parameter space for two-dimensional
Ising systems.
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line are pushed toward F by R , as the arrows indicate.
s

The point AF is the antiferromagnetie fixed point.

The nearest-neighbor interaction K is negative, but the

next-nearest-neighbor interaction K is positive. The

line F'-AF-AB is the critical surface for this fixed point.

Note that Fig. 8. 6 is symmetric about the K axis,

This is easily understood. Under the transformation in

which we change the sign of K. and at the same time

change the sign of all spins on one of the two sublattices in

Fig, 8. 3, the Bamiltonian is unchanged. Thus we can ob-

tain results for the case K. < 0 by applying this trans-

formation to those for K > 0. TMs transformation does

not interfere with the RG defined by the block construction,

Fig. 8. 3. Note that the invariance of the Hamiltonian

under this transformation will not hold if there is a mag-

netic field or any interaction which involves an odd number

of spins in either sublattice, or in any way destroys the

symmetry between the two sublattices.

As we mentioned earlier, if K = 0 , we have two

independent and identical sublattices. The point F' is the

ferromagnetic fixed point for these sublattices. The point

1

2

2
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AF' is the antiferromagnetic fixed point for these sub-

lattices. The fixed point F' is unstable against turning on

a small K I while AF' is stable.

Figure 8. 6 can also be viewed as a phase diagram.

Points with K, > 0 and above the line F'- F- B represent

ferromagnetic Ising systems. Points with K < 0, and

above the line F ' -AF-AB represent antiferromagnetic

systems. Below these lines but above the line C - AF'- AC,

points represent paramagnetic systems. Below the line

C-AF'-AC, points represent layered antiferromagnetic

systems. Figure 8.7 shows the ground state configuration

of a layered antiferrornagnetic system. Each of the two

sublattiees is antiferromagnetic owing to a large negative

K 2 .

Figure 8,7. A ground state configuration of a layered
antiferromagnet.
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A system at a very low temperature will have large

values of K and K since K * 1/T. Thus the outer

regions of the parameter space, i.e., where K ,K are
large, represent systems at very low temperatures. The

asymptotic behavior of the critical surfaces and other

characteristics are therefore determined by low-tempera-

ture properties of Ising systems. For example, the

asymptote of B or C is determined by equating the energy

of the ground ferromagnetic configuration (all spins line up)

to that of the layered antiferromagnetic configuration

(Fig. 8.7), i.e.,

which gives the asymptote K + 2K, = 0.
i M

Likewise for high temperatures we have K ,K -»• 0.

The origin of Fig. 8. 6 thus describes the high-temperature

limit. It is a stable fixed point.

We shall close this section by mentioning the 8-

vertex model of Baxter (1971). The Baxter model starts

with a square lattice Ising model with K > 0 and K = 0,

i, e. , on the K_ axis of Fig. 8. 6. This means two identical
£*
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independent sublattices of Ising spins. Then a small K ,

i. e., a 4-spin interaction

for -1C [see (8.53)] is turned on. Two of the four spins

in (8.71) belong to sublattice a and the other two belong

to sublattice b. As a result, the two sublattices are no

longer independent. Baxter solved the model for small K

and fomnd that critical exponents depend on K . What is

happening can be described in the RG language as follows.

Imagine what we have a K, axis pointing out of the paper

from Fig. 8. 6. Calculations show that there is a line of

fixed points in the (K. , K?, K ) space intersecting the

(K , K ) plane at F'. The critical exponents of the Baxter

model depend on which fixed point on this line is involved.

There is another line of fixed points going through AF' .

On the other hand, the ferromagnetic and antiferromagnetic

fixed points F and AF will be lifted off the K K plane
3. Lf

when K- is included but they remain isolated points.

It should be emphasized that the existence of a line

of fixed points of an RG does not automatically imply

3
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different exponents for different fixed points on the line.

In our study"of the linear RG, for example, the parameter

c [see (8. 3), (8. 8)] can assume different values and give

different fixed points but with the same exponents.

The cusp formed by the critical surfaces at the

point F' is also of interest. This and other features will

not be elaborated here. The reader is referred to the

papers of van Leeuwen (1975) and Nauenberg and Nienhuis

(1974).

6. DISCUSSION

In spite of the success of the numerical RG program

for two-dimensional Ising systems so far, a great deal re-

mains to be understood, in order to be able to apply the

program to study three -dimensional systems.

The most pressing question is how to choose the

optimal definition of the RG which will allow us to get good

approximate answers using only a small number of spins.

Before answering this question, one must note that one may

get very bad answers using a small number of spins if the

choice of RG is not optimum, even though good answers
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can be obtained using a larger number of spins. Bell and

Wilson (1974) studied this question using a linear RG

applied to a Gaussian model. JLet us sketch some of their

basic ideas.

If there are many fixed points other than the ones

we are looking for, we may get a wrong fixed point because

we cannot distinguish it from the right one with just a small

number of spins. For example, there are fixed points

which have an infinite range of interaction among spins,

although such fixed points cannot be reached if we apply the

RG to a Hamiltonian with short-range (i. e., finite) interac-

tions. The fixed points of interest are those with short-

range interactions. The exact range of a short-range

fixed point depends on the detailed definition of the RG.

Suppose that we happened to pick an RG whose short-range

fixed point has an interaction range of three-lattice spac-

ings. Then, if we carry out the RG program on 3X 3

spins, we shall not be able to distinguish the short-range

fixed point and longer-range fixed points. We would need

more, say 6x6, spins to sort out the short-range fixed

point.
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There are often adjustable parameters in the defini-

tion of the RG, such as the p in (8, 66). It may be possible

that the right fixed point cannot be obtained unless such

parameters are chosen to be certain values. Otherwise,

one gets a wrong fixed point. It becomes crucial to devise

practical criteria for choosing the right values. Kadanoff

and Houghton (1974), Bell and Wilson (1974), have dis-

cussed various possibilities. More recently, Kadanoff and

coworkers (1975) have studied variational approaches to

optimize the choice of RG, and applied them to obtain expo-

nents for three-dimensional Ising models.

Recent numerical efforts have not been limited to

discrete spins. For example, Golner and Riedel (1975),

Myerson (1975), and others have derived approximate RG

equations from the exact differential equation of the RG of

Wilson and Kogut (1974), and carried out numerical calcu-

lations for d = 3. These important developments will not

be reviewed here and the reader is referred to the original

papers.

In this and previous chapters we have reviewed

several methods of constructing and analyzing the RG
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transformations. All of these examples have one thing in

common,, namely, that some form of truncation is neces-

sary in order to get any result. In the small e case the

truncation is effected by dropping higher-order terms in e .

In the large-n case it is done by dropping higher orders in

1/n. To obtain Wilson's recursion formula, the truncation

is made by plausible approximations. In carrying out the

RG for discrete spins one has to truncate by sticking to

only a small number of spins. Furthermore, ail these

truncations are very difficult to improve. Carrying out

calculations to one more order in e or including more

spins requires an order of magnitude greater effort. We

simply have not understood enough about the RG to be able

to systematically improve the approximation in practice,

although we can formally define the RG exactly. We do not

know how much more accurate the exponents will be if we

include two more spins in the calculation, for example,

We notice that the simplicity of the fixed points and

critical surfaces in the examples given above is a conse-

quence of bold truncations. A fundamental question arises

concerning the operational meaning of the exact RG free



from any truncation, despite the fact that its formal mean-

ing is easily defined. There has been no proof that the

fixed points, critical surface, etc., found in a truncated

RG exist for the exact JRG (except in cases like the one-

dimensional Ising model whose T is zero and which p*ob

ably does not reflect many of the important features which

are relevant for the RG in two or three dimensions).

We should note that there is a difference between

the truncation in the sraail-e (or the n -*») case and that

in Wilson's recursion formula or the numerical calcula-

tions described above. The former kind of truncation is

formally exact to the order calculated in e or 1/n. This

formal exactness cannot be taken as rigorously established

since questions concerning the order of limits, the con-

vergence of expansions, etc. , are unresolved, The latter

kind of truncation is based more on experience and plaus-

ible arguments, and is not well understood either.

At this moment it is fair to say that our understand-

ing of the RG is still quite incomplete, although no incon-

sistency has been found in the basic ideas.
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In the following chapters we shall assume the

validity of these basic ideas and the existence of the RG,

exact or truncated, and discuss various extended concepts

and applications.
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IX. PERTURBATION EXPANSIONS

SUMMARY

We introduce the perturbation expansion of the

Ginzburg-L.and.au model by means of graphs. The use of

the perturbation theory as a mathematical device for the

e expansion and the 1/n expansion is discussed, with

emphasis upon the basic assumptions of these expansions.

Elementary techniques are illustrated and critical behavior

below T and the problem of anisotropy are briefly dis-

cussed. We also caution against certain misinterpretations

which have been common in the literature. Tables of expo-

nents in the e and the 1 /n expansions are provided.
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1. USE OF PERTURBATION THEORY IN STUDYING
CRITICAL PHENOMENA

The success of perturbation methods in various

branches of physics has been impressive indeed. Not only

has the perturbation expansion proven invaluable for practi-

cal calculations, but it also has contributed to our basic

qualitative understanding of many phenomena. The expan-

sion in powers of the electronic charge in electrodynamics,

for example, is the basis for understanding physical proc-

esses such as emission and absorption of photons.

The study of critical phenomena is among the many

cases where perturbation expansions do not work. As we

have seen in Chapter III, if 1 is very close to T , the

fluctuation of the order parameter is so large that the per-

turbation theory does not provide an adequate description

of the phenomena involved. One needs to analyze critical

phenomena with concepts and methods that are free from

any perturbation expansion. The method of the RG is

designed for this purpose.

If the perturbation expansion does not work for

critical phenomena, why, then, are we going to study it?
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The reason is that many important results have been de-

rived from expansions in powers of e = 4- d or 1/n.

Perturbation theory is useful in the study of such expansions.

These small parameters, e and 1/n, are quite

artificial and have no physical meaning, in contrast to the

electron charge in electrodynamics. Thus the perturbation

method which we shall discuss will be no more than a handy

mathematical tool whose application to the study of critical

phenomena will rely on various assumed properties of the

RG. It should be borne in mind that this method is used

essentially for the purpose of mathematical extrapolations

and not for the physical interpretation of critical phenomena,

In the next few sections we shall introduce the gen-

eral technique of using graphs and its application to the

study of critical phenomena. Rather than review material

which is already extensively discussed in the literature on

the e expansion and the 1/n expansion, we shall discuss

those elementary aspects of the method which seem to have

been left out or taken for granted in the literature.
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2. PERTURBATION EXPANSION OF THE
GINZBURG-LANDAU MODEL

For the moment, let us forget about critical phe-

nomena and the RG. We begin with the Gaussian probability
- 1C

distribution P « e with our old notation
o

*
Note that O., = 0 . , since O.(x) is real. Let a., and

ik i-k i ik

P., be, respectively, the real and the imaginary parts of
i&

0., . Thus a,, = a and p., = -P . . For every pair
i.K lit i "*KI liC i*"IC

of wave vectors (k, -k) and for every component i we have

an independent Gaussian probability distribution

2 - 1
where G (k) = (r + k ) . The averages over the proba-o o r

"*"$

bility distribution P « e are thereforeA
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It is a good exercise to show, using (9.2), that

The factor (2m)!/(m! 2 ) happens to be just the number

of ways of dividing up 2m objects into m pairs. More

generally we can figure out the average

for any i.,... , i , k.., .. ., k , by the following rules:

(a) if 1 is odd, A = 0, and
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(b) if 1 is even, A is the sum of products of pair-

wise average, summing over ail possible ways of pairing

up the 1 CF'S. Each pair gives a factor shown in the last

line of ̂  3).

If we take the Fourier transform of (9. 5), we get

which is then the sum of products of pairwise averages;

each pair gives

Now we turn to the Ginzburg-Landau model with

which we have encountered many times earlier with

u{x-x'} = u 6 ( x - x ' ) . The reason for writing 1/2's in
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this special way will be clear shortly. We  1C

as a perturbation and expand

The average value of any quantity Q over the distribution

K!
P « e is then expressed in terms of the average over

"Ko
the Gaussian distribution P « e :

o
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The free energy per volume 3> is obtained through
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is an obvious notation.

In (9. 10) and (9. 11) the task is to calculate averages

of powers of TC and their products with Q over the

Gaussian distribution. Since Q is in general a product of

0's and so is 3C , each term in (9. 10) and (9. 11) is of the

form (9. 6) before integrating over space. Our task be-

comes one of combining pairwise averages. The use of

graphs helps greatly in this task. Let us see how it helps

in evaluating the first-order term in the sum of (9. 11),

namel ,
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In Fig. 9. la we pick two points x and x' and connect

them with a dashed line to represent u(x-x ' ) . The solid

lines sticking out at x and x' represent the 0's. The

rule for averaging established earlier is to pair up the o's

in ail possible ways. Graphically this is represented by

joining the ends of lines in Fig, 9. la pairwise in all pos-

sible ways. One way is shown in Fig. 9. lb representing

Figure 9. lc shows another way giving
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Figure 9, 1. (a) The graph representation of the interaction
u(x-x') , (b) and (c) First-order terras in the
free energy.

One of the 1/2 factors is gone because there are two ways

to join CJ.(x) to one of the two a.(x')'s in 0 (x')« Thus

we have

This example illustrates the way graphs can be constructed

to represent terms in the perturbation expansion. However,

in practice the use of graphs is the other way around.

Namely, under a set of rules, one can draw graphs first
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and then write down the perturbation terms. One needs a

set of efficient and easily memorized rules. How these

rules are set up and used is flexible and to some extent a

matter of personal preference. The rules developed below

are our suggestions.

Let us stay with the sum of (9. 11) for the moment.

For a given m there are m factors of the inter-

action, i, e. ,

and we need m dashed lines to represent them. The inte-

grations over x,, x ' , . . . x' sum over all the configura-
l l m

tions of the dashed lines. The factor (l/m!)(l/Z) tells

us that those configurations differing by only a permutation

without a change of geometry are counted as only one con-

figuration, i. e., every geometrically distinct configuration

is counted once and once only. To carry out
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2 2(o (x ) ... o (x' )} we join the ends of dashed lines by
solid lines in all possible ways. Let us write down the

rules for computing terms of mth order.

(a) Draw m dashed lines. Each of the two ends

of a dashed line joins the ends of two solid lines. Solid

lines are thus continuously joined into closed loops. Fig-

ures 9. 1 and 9.2 show the first- and the second-order

terms. One must draw all possible graphs consistent with

this rule,

(b) For each graph, label the coordinates of the

joints ("vertices"). Write -u(x-x') if a dashed line joins

x and x ' , and write G (x-x '} if a solid line joins x

and 3£'.

(c) Integrate over all coordinates and give a factor

n for each closed loop of solid lines. This takes care of

the integrations and summations over components in (9. 16).

(d) Divide the result of (c) by the number of permu-

tations of vertices under which the graph is unchanged.

This accounts for the above emphasized fact that each geo-

metrically distinct configuration must be counted only once.
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Figure 9.2, Second-order terms of



(e) For every closed loop which can be flipped with-

out changing the graph, divide the result of (d) by 2.

Hie last rule, (d), is to take care of additional sym-

metry of closed loops, and is best illustrated by examples,

In Fig. 9. lb, each loop can be flipped upside down without

changing the graph and thus each giving a factor 1/2. This

rale takes care of the 1/2 factor in front of each a in

(9. 16). If no such flip symmetry exists in a graph, then

the 1/2 is always canceled in view of the fact that there are

two ways to join to a a, in <?. ' . Most authors prefer to

keep track of these extra factors of 2's and define 1C, with-

out the 1/2 for each cj . This is a matter of convention.

Our rules here are completely in terms of graph sym-

metry and no more factors are needed.

Thus the factor 1/8 in the first term of (9. 15} comes

from the permutation symmetry of x and x' , and the

flipping symmetry of the two loops of Fig. 9. lb. The factor

1/4 comes from the permutation of x and x' and the

flipping symmetry of the loop of Fig. 9. Ic.

Clearly, there are terms which are represented by

disconnected graphs such as Fig. 9.2a and there are terms
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which are represented by connected graphs. The "linked

cluster theorem" tells us that, when we take the logarithm

in (9, 11), only connected graphs will remain. This fact is

easily established as follows.

A general graph has several disconnected pieces.

Some of them may be identical. Let C. denote the con-
A,

tribution of a certain connected diagram. Thus a general

disconnected graph gives

The factor in front enables us to divide out the number of

permutations which leave the graph unchanged, (The sym-

metry of each connected piece is taken care of in C. . ) If
A

we sum over all graphs, i. e, , over all m,., m_, . . . in

(9. 17), taking into account all C 's, we get
A

where the zeroth-order term, i. e. , 1, is included. Taking

the logarithm gives simply the sum of all connected graphs.
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Equation {9. 11) becomes

This is the linked cluster theorem. Every C. is a
\

"cluster. "

The above rules are easily generalized to include

the calculation of average values via (9. 10). For example,

if Q = 0.(y) 9.(z), we have the correlation function

The only new things here are the two o's. The coordinates

y and z are fixed. In addition to the lines drawn accord-

ing to Rule (a), we also draw lines to join y and z to the

dashed lines. Figure 9. 3 shows some examples. Note

that ( a . ) = 0 by symmetry. The points y and z are

connected by a continuous sequence of solid lines. The

lines joined directly to the points y and z are called

external line a or legs. All other lines are called internal

292 
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lines. The numerator of (9.20) is the sum of 2-leg graphs

while the denominator is the sura of 0-leg graphs. Note

that the sum of 2-leg graphs is the product of the sum of

connected 2-leg graphs and the sum of all 0-leg graphs.

Thus the 0-leg graphs in'the denominator cancel those in

the numerator. We are left with the conclusion that

G(y -z ) is the sum of all connected 2-leg graphs {apart

from the trivial term G (y- z)). Obviously (9. 19) says

that the free energy (apart from the 5 term) is the sum

of connected 0-leg graphs,

More generally, we define
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Figure 9. 3. (a) Zeroth- and (b) first-order terms of
G(y-z).
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is the sum of m-leg connected graphs. Note that we put

subscript c on the average sign to denote "cumulant. " It

is possible to still have disconnected graphs even after the

0-leg graphs are factored out. Figure 9. 4 shows an ex-

ample. The cumulant average of a product excludes all

products of cumulant averages of all subsets. For example,

Figure 9. 4. A disconnected graph for (0(x )a(x_)a(x 



The disconnected pieces in Fig. 9. 4 are just cumulants of

two subsets of O ( x . ) , . , « , o" (x ). Excluding such terms

means keeping only graphs which are connected. The sub-

script c thus also implies connectedness.

Often it is more convenient to use wave vectors as

integration variables by Fourier transforming all coordi-

nates. Then every line carries a wave vector (instead of

every vertex carrying a coordinate). The sum of all wave

vectors that point toward a vertex must be zero (the wave-

vector conservation rule). A dashed line with a wave

vector q gives a factor

and a solid line with a wave vector q gives G (q) =

7 - 1(r +q's) . This is the "wave vector representation"

instead of the "coordinate representation" used so far. As

an example, Fig. 9.5 gives

which is the first-order contribution to G{k) [and is just
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Figure 9. 5. The terms in (9.25).

Fig. 9. 3{b) in the wave-vector representation]. All wave

vectors not fixed by the conservation law at vertices must

-d
be integrated over. Each integral carries a factor (2TT)

The wave-vector dependence of u will be ignored subse-

quently, assuming u(x) has a very short range,

That part of a graph for G containing no single

isolated solid line is frequently called the "self-energy

part" £. The graphs in Fig. 9.5 excluding the legs are

graphs for the self-energy. Equation (9.25) is a term of

-G £ G . The minus sign is a matter of convention,o o 6

Graphs for G are then obtained by hooking up self-

energy graphs as shown in Fig. 9. 6. Consequently,
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Figure 9, 6. The correlation function in terms of the self
energy part, Eq, (9.25).

It will turn out to be more convenient in many calculations

to modify the definition of G slightly. We write

is just the inverse susceptibility. Now we define

Here
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and calculate everything as a function of r instead of r .

We must subtract £(0) from L(k) when we calculate G(k).

At the critical point, r = 0 and r = r . Equation (9.2?)

gives

A word of caution: if one is interested in calculat-

ing the free-energy graphs, then self-energy insertions

cannot be correctly summed by the geometric series (9,26).

The above rule of using (9. 28a) as G and subtracting £{0)

from E(k) will not work for free-energy graphs owing to

extra symmetry factors. The reader can easily check this

by studying the lowest-order graphs. Since we shall rarely

be interested in computing free-energy graphs, no further

elaboration on this point is needed here.

3. DIVERGENCE OF THE PERTURBATION
EXPANSION AT THE CRITICAL POINT

In this section we show that the expansion parameter

of the perturbation expansion outlined above is actually

. The inverse susceptibility
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vanishes as the critical point is approached, and the expan-

sion parameter becomes infinite. Consequently the pertur-

bation expansion diverges. To be specific, consider the

calculation of the self energy S{k) for k -* 0. The conlu-

sion is more general.

Every term in the perturbation expansion is a mul-

tiple integral over the wave vectors labeling the internal

lines. A graph of the mth-order term has m dashed lines

representing m powers of u. A graph of (m+l)st order

has one more dashed lines. Since each dashed line joins

four ends of solid lines, and each solid line has two ends,

one additional dashed line implies two additional solid lines,

which implies two extra G "s and two extra wave vectors.F o

The wave-vector conservation law for the wave vectors

joined to this additional dashed line leaves one of the two

extra wave vectors undetermined and to be integrated over.

In short, when the order goes up by one there are two more

G 's and one more integration. Since there are two powers

of wave vectors (or one power of r) in each G and since
each wave-vector integral involves d powers of wave vec-

tors, a graph of the (m+l)st order has an extra factor of
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, 1/2.d-4
u(r ) compared to a graph of the mth order, apart

from a numerical factor after all wave-vector integrals

are done. Therefore the larger the order, the larger the

contribution if u ^ 0, d < 4, and r is sufficiently small.

For d > 4, the wave-vector integrations will not

diverge even if r = 0. An (m+l)st-order graph will have

d-4
an extra factor uA compared to an rath-order graph,

Here A is the upper cutoff of the wave-vector integrals.

(For d < 4, there is also a contribution proportional to

.d-4 , ., t ... , l/2(d-4) .. .uA besides terms proportional to ur discussed

above, but such a contribution plays no part in our conclu-

sions. )

For d = 4 one expects logarithms of A and r in-

stead of r1/2^4) and ̂ 4.

The above analysis can be replaced by a simple

dimensional argument. It is left to the reader as an exer-

cise to show that the only dimensionless parameters pro-

. t 1/2(d-4) , .d-4portional to u are ur and uA

While it is easy to show the divergence of the per-

turbation expansion when the expansion parameter diverges,

there is no proof that the expansion converges if the
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expansion parameter does not diverge. There has been no

established radius of convergence for the expansion.

The above discussion can be generalized when the

quantity of interest depends also on a wave vector k, for

example, £(k) with k ^ 0. There is then another expan-

d-4
sion parameter uk , which diverges for k -* 0.

So far we have assumed that (o) = 0 . The pertur-

bation expansion must be modified when (o) ^ 0; this case

will be discussed in Sec. 7.

4. THE 1/n EXPANSION OF CRITICAL, EXPONENTS

Although the perturbation expansion diverges for

k -* 0 and at the critical point, it still can be used as a

mathematical tool for extrapolation schemes known as the

e expansion and the 1 /n expansion. The former is con-

ceptually more complicated and will be discussed in the

next section.

The logical basis of the 1 /n expansion of expo-

nents by perturbation method is simply illustrated by the

following example. The EG analysis of Chapter VI tells
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us that the correlation function at T for small k be-c

haves like

[See Eq, (6.20). ] The analysis of Chapter VIII tells us

that T) = 0 and y_ = d-4 for n -»°° . Suppose that
£*

T| = O(l/n) and y = d -4 + O(l/n), Then we obtain
£t

if we expand (9.29) formally in powers of 1/n. If we can

calculate Gk by any means to O(l/n) or higher orders

in 1/n, t) can be extracted from the ratio of the coeffi-

cient of the In k term and the constant term. Since f\ is

universal, we can pick the simplest possible model for

computing T|. Let us pick the Ginzburg-Landau model

with u = O(l/n). Then the perturbation expansion becomes
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a series of powers of 1 /n (apart from a slight complica-

tion to be discussed shortly). Note that u = O(l/n) is our

special choice for the sake of getting exponents; this choice

is mathematically motivated and has no physical meaning.

Let us illustrate the basic technique of the 1/n

expansion. We shall always assume that 2 < d< 4 unless

otherwise stated.

All we need to do to find r\ to O(l/n) is to obtain the

k Ink term in £(k) - 11(0). Since we choose u = O(l/n),

can we drop all but the first-order in the perturbation

expansion? The answer is no.. We argued in the previous

d-4
section that the expansion parameter is actually uk

d-4
and therefore we shall get a term proportional to k

instead of In k from the first-order term. We must note

that for every close loop of solid lines, there is a factor n

owing to the summation over spin components [see Rule (c)
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of Sec, 2], The more loops, the more factors of n. Fig-

ure 9.7(a), (b), (c) show graphs for £ up to O(l/n). A

wavy line represents the sura of graphs in Fig. 9.7(d).

Whenever we include a u, we must include all "bubble

Figure 9.7. (a) O{1) term of I.
|b) and (c) O{l/n) terms of £.
(d) Definition of the wavy line. Every term

in the sum is of O(l/n).



corrections" in Fig. 9. 7(d) because each bubble is propor-

tional to n and compensates for the 1/n in the additional

u needed to join the bubble to another bubble. The sum of

graphs in Fig. 9.7(d) gives a "dressed" u. Thus a wavy

line represents

where H(k) is the bubble given by

2
which is a function of k and r . Here we set r = 0 for

the case T = T .
c

The integral (9. 33) is easily done. Just by dimen-

sional analysis we can write

for k« A. The constant 11(0,1), obtained by a more
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detailed calculation, is given in Table 9. 1. This table also

lists properties of 0 for r ^ 0.

We note that the contribution of Fig. 9. 7 (a) and (b)

to E(k) is independent of k. Therefore only Fig. 9.7(c)

contributes to S(k) - 2(0), which is

2
The task now is to extract the k In k terra in this integral.

Clearly the k In k terms must come from the small-p

region of the integral, i. e. , the region near p = 0. If p

is not small, the contribution to the integral divided by k

is well defined for k -*• 0 and cannot give rise to an In k.

d-4
If p is small, Il(p) ~ p is large and we can drop the

1 compared to the u •= H(p) in the denominator of (9. 35),

i. e. ,
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Note that u has dropped out. It should drop out in view of

the expectation that f] must be independent of u. Substi-

tuting (9. 36) in (9. 35) and performing the integral, one

2
indeed finds a k In k term

where S, is defined in Table 9. 1.
d

The above calculation illustrates fully how the 1/n

expansion can be done using the perturbation expansion.

The introduction of an artificial small parameter has

allowed us to take advantage of the perturbation expansion,

which we have shown to be meaningless in describing

critical phenomena earlier.

Other exponents have also been calculated using the

1/n expansion. The technical aspects of this procedure

are well presented in the literature [see, for example,

Ma (1973a)]« A summary of results will be given at the

end of this chapter.
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Some useful data for the 1 /n expansion calculations

Table 9. 1
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5. THE e EXPANSION OF CRITICAL EXPONENTS

As in the 1/n expansion illustrated above, the e

expansion of critical exponents by using perturbation meth-

ods follows the same steps. Again, let us discuss (9.29),

(9. 30) and (9. 31), and the calculation of r\. Instead of

choosing u = Q(l/n), we now choose u = O(e), The quan-

tity n is arbitrary here. We then calculate G(k) by per-

turbation expansion and try to get f] from the k In k
2

term of E(k) - E{0). We know that r\ = O(e ) from

Chapter VII.

Now we run into a complication which did not occur

for the 1/n expansion. The exponent y is - e + O{ e )
£t

-y?
[see Eq. (7.73)]. Consequently the O(k *") terrain

(9.29) will also appear as a series in In k, i, e, ,

-YZ
k = 1 4 - e l n k 4 « ' « » when expanded in powers of e .

-YzNote that in the case of the 1/n expansion, k appears

as k (1 4- O ( — Inkll. The k dependence is easily
2

identified by inspection. If we calculate G{k)k in powers

of e , we shall get not only powers of In k owing to the

k , which are what we want, but also powers of In k
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'Jz
from k , which we are not interested in. The Ink 's

from the two origins cannot be separated by inspection in a

practical calculation of G(k). A mathematical prescription

must be developed to separate them in order to find T) .

Wilson {1972} put forth such a mathematical pre-

scription. Operationally, it simply involves matching:

Choose a special value of u, which he called u ( e ) , in

the Ginzburg-Landau model such that the calculated series

of In k for G(k)k exponentiates to match the expected

power law behavior k . In other words, adjust u to a

special value so that the coefficient of (In k) is 1/2 of
3

the square of the coefficient of Ink, that of ( Ink) is

1/31 of the cube of that of In k and so on. Once u ( e )

is found [u ( e ) turns out to be of O(e)] , one can use the

perturbation expansion to calculate other quantities. The

associated exponents can be extracted from logarithms.

For this special value of u = u ( e ) , the logarithms owing

-*2to O(k ) do not appear.

The meaning of u ( e ) and the reason behind its

special property was explained by Wilson (1972). His
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explanation was brief and was often misu.nd.erstood, even

though everyone learned how to calculate following his pre-

scription. A good deal of confusion in the literature appears

to have grown out of such misunderstanding. We shall com-

ment on this point later in Sec. 8 .

Let us explain the meaning of u ( e } in detail. We

need to take for granted the qualitative conclusions of

Chapter VI on the structure of the parameter space of the

RG.

Recall that for \j. near a fixed point \j.* we can

* L
expand 6n = |-i - (J. in eigenvectors e. of R :

J s

The transformation under R is given by
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y2
where the last terra is denoted by O(s } for large s in

(6,29) because y. is the largest of all y.'s in the last
^ j

sum. We showed in Chapter VI that the power law behavior

for the correlation function and other physical quantities
y2

follows when the O(s ) terras are neglected.

If the t in the sura of (9. 39) is zero, then the
Y3

largest terra in the last sum of (9. 39) will be s t,6^ £°r

"y2large s, and the O(k ) term in (9.29) will be replaced

~y3 "y3
by O(k ). If y is of O(l) instead of O(e), then 

will not give rise to powers of In k which get mixed up

with those from k , In fact y = -2 + O(e), as we dis-
-¥•* 2

cussed in Chapter VII, and k J = k (1 -f O( e) In k),

2which has an extra k in front. Thus to remove the un-

wanted logarithms from the e expansion, we need simply

to choose the parameters in the Hamiltonian such that

t? = 0. We now define u (e) by the following statement:

The Ginzburg-Landau^modei^with h = 0, r =

r (r = 0) and u = u (e ) is just that Ginzburg-Landau

model repre8^atedbytbe8;pecia.lpoint (l with h = t, =Jl ~~*"

%- '̂
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* *
Note that (w (e), r ) are not (u,. , r ), the values

o oc 4 o

of u, and r at the fixed point, even though (u (e ) . r }4 o o oc
* *

happen to have the same values as (u , r ) to the first
*

order in e . The fixed point 1C is not of a Ginzburg-

Landau form beyond O(e).

The removal of t, is sometimes referred to as
M

"the removal of the slow transient" or the "enlargement of
Y2

the critical region. " Since s with a very small although

negative y_ implies a very slow approach or transient of
c*

Y2R u to u* as s increases, the removal of t_ s is
8 2

thus the removal of the slow transient. According to

(6.47)- (6.50), the critical regions depend on y_ crucially.
&r

If jy | is small, so is the critical region. If t = 0, all
& (M

the y, 's in (6. 47) - (6. 50) will be replaced by a much
M

larger Jy | and the critical region will be enlarged from
-1/e

O(10 ) to O(l). In the case of the 1/n expansion,

4-d is not a small quantity and the critical region is

already of O{1). Therefore there is no need to set u to

any special value.

In principle r and u (e) can be obtained by solv-

ing the equations t, (r . u (e)) = 0 and t_ (r , u (e ) ) = 0.
1 oc o 2 oc o
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In practice there is no need to solve these equations. One

can simply use the matching prescription discussed above.

There is no need to make any reference to the RG as far as

the practical calculation of exponents in powers of e is

concerned. However, without understanding the RG struc-

ture first we would not understand the criteria for match-

ing. Wrong criteria lead to meaningless results,

6. SIMPLE ILLUSTRATIVE CALCULATIONS, r\ AND 0,

The following examples illustrate the use of graphs

and roughly how the e expansion is carried out in practice.

First, let us calculate r\ to O(e }. Assume

u = u (e) = O(e}, The second-order contribution to E(k) is

given in Fig, 9. 8, Note that the first-order graphs, shown

in Fig. 9.5, are independent of k and therefore do not

contribute to S(k) - E(0). We obtain, following the rules

developed earlier,
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Figure 9. 8. Second-order terras of £(k) which depend
on k .

we obtain

We are only interested in the k In k term in E(k). Let

"•lid * TiC
us replace e in (9. 42) by the expansion

Since we set r = 0, we have Setting d = 4,

The integral is easily done by going back to the

oordinate representation:



The first term is independent of k and can be ignored.

The second term is odd in x and does not contribute to the

1 k^ |x|^
integral. The third terra is equivalent to - — . „,„„ L.J,= by

2 4

spherical symmetry. Thus

The integral of (9.45) is logarithmically divergent. The

expansion (9. 44} is in fact illegitimate. However, for

2
extracting k In k it does serve the purpose. The upper

cutoff of the integral is ~ 1/k given by e and the

lower cutoff is ~ A" given by the J in {9. 43). We

obtain

Note that the In k term in (9. 46) is the sum of -TI In k
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-r] -?2
from k and the contribution from O(k } as we ex-

plained in the previous section. The next task is to calcu-

~72
late u (e). When we set u = u (e) in (9. 46) the O(k )o o

becomes zero and we obtain

There are several ways of obtaining u (e) by matching.

2 - 2 - 1
One way is to calculate the (In k) terra of k G to

O(e ). Since there is no O(e ) term in the matching

formula

because r\ = O(e ), we can set the coefficient of (In k) to

3O(s ) to zero and solve for u . We then obtain u (e} too
-1-2 3

O(e). To compute G k to O(e ) we not only have to

3
calculate to O(u ) in the perturbation expansion, but also

2
have to obtain the O(e u ) terms in (9. 40) by expanding the

E occurring in (2Trf (4~£) /d(4"e) pd(4"e)q. This pro-

gram is not difficult to carry out, but there are simpler

ways to obtain u (e) to O(e) by using matching formulas
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other than (9. 48), The most convenient one is that involv-

ing exponents that are already known to O(e). It was first

used by Wilson (1972) and is obtained as follows,

First we define the correlation function of four

spins:

where k = -It- - k - k . This correlation function is
4 A ^ 3

represented by graphs of four legs. Now we divide it by

G(k ) G(k ) G(k ) G(k ) and take the limit of small k's to
i £* 3 4

obtain
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This division removes the contribution of the four legs (or

"amputates the legs"). The transformation formula (5, 16)

for G(k, n) is easily generalized to correlation functions
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involving more spins. We obtain

Note that

(9. 49a). We thus obtain from (9. 49b)

The generalization of (6. 19) using the same arguments

gives

since 1/r « § » To the first order in e , TJ = 0,

y_ = - e ; we therefore obtain
J&

which involves no uiiknown exponent.

The lowest-order graph for T is just Fig. 9.9(a),
4
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which gives simply u. The next-order graphs are shown

by Fig. 9,9(b). We obtain, using G (p) = l/(r + p ),

Comparing (9, 54) and (9. 53), we see that in order to set
y2

t_ = 0 and remove the In r coming from O( § }, we need
Cf

to choose u = u ( e } with
o

Figure 9. 9. Graphs for T^: (a) O(u), and (b



Substituting (9.55) in (9.47), we obtain

The exponent Y ca.n be obtained to O( £ ) by evalu-

ating Fig. 9.5 with k = 0 and using the formula

The algebra is left as an exercise for the reader. The

result is

We now proceed to calculate the specific heat exponent a.

The specific heat can be obtained from
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The zeroth-order terra is shown in Fig. 9. 10a which gives

where A and B are cutoff-dependent constants of O(l).

To O{1) one would conclude that C « In r, which is con-

sistent with a = 0 + O(e). The O(u) terms are shown in

Fig. 9. 10b, which gives -u-r-ly + 11 II . Combining it
with (9. 60), we obtain

where A' is a constant of O{1). The expected behavior of

C {see Sec. VI. 3), is

Figure 9. 10. Graphs for <a2(x) O2(0}
(a) O(l), and (b) O(u). C
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Note that (9. 62) and (9. 63) do not have any specified overall

constant factor. We can only compare what is in the brack-

ets. Using (9. 55) we obtain

The simplicity of the O( e) calculation shown above

does not remain for higher-order calculations. The number

of graphs increases rapidly with the order. Counting

graphs is a trivial task compared to performing the inte-

grals. We shall not elaborate on higher-order calcula-

tions here.
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Comparing (9.61) and (9.62), we obtain
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7. THE PERTURBATION EXPANSION IN THE
PRESENCE OF A NONZERO (a)

Recall that in the Gaussian approximation discussed

in Chapter III, the spin fluctuation [i. e. , the deviation of

the spin configuration Q"(x) from the most probable con-

figuration (J(x)] was treated by the quadratic, or harmonic,

approximation. The perturbation expansion is just an ex-

tension of the Gaussian approximation to include the an-

harmonic terms in "K, The most probable configuration

5(x) is the configuration that minimizes T[o~] , as was

explained in Chapter III. For T > T and h = 0, we have

5(x) = 0 so that a - 5 = 0". The perturbation expansion

discussed in this chapter has assumed that 5 = 0 ,

For T< T or h # 0, o(x) $ 0, The perturbation

expansion must be modified. The Gaussian approximation

with 0 ^ 0 was discussed in Chapter III. To set up the

perturbation expansion we extend the Gaussian approxima-

tion by keeping in "K anharmonic terms of a - ( 0" ) as

well. In the Gaussian approximation 0(x) is just the aver-

age spin (0) . Beyond the Gaussian approximation the

most probable configuration 0 is no longer the same as

324



the average spin (d) , but it is more convenient to formu-

late the perturbation expansion in terras of o - (a) than in

terms of 0 -0 ,

Let the field h be along the 1 direction so that the

magnetization is long the 1 direction, i. e., (0,(x)> = m.6.

Write 0' = a - m and 3C[0 ] is then expressed in terms

This Hamiltonian is manifestly asymmetric under rotations

in the spin space. The field h has selected a special
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direction. The fact that h is the only source of the rota-

tion asymmetry leads to some important mathematical

consequences which we shall mention before going into the

details of the perturbation expansion.

Define

If we change the field h to h + 6h, the average spin m

will change into m + 6m. If 5hll h, the ratio 6m/6h is

called the longitudinal susceptibility, which is related to

If 6hlh, the ratio is called the transverse susceptibility

related to G by

Now we note that applying an infinitesimal field 6h per-

pendicular to h is the same as rotating h by an
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infinitesimal angle Sh/h. As a result the original m

must be rotated by the same angle, i. e.,

This result fixes the small k limit of G.(k). Of special

interest is the case h -»• 0 and m ^ 0, which occurs for

T< T . tt follows from (9.70) that
c

for T< T , h-*0 . Equations (9.70) and (9.71) are very
C

important mathematical relations independent of the per-

turbation expansion. Of course for T> T , m vanishes

when h vanishes and G (0) = G (0) ^ 0 is just the in-
verse susceptibility. Physically (9.71) simply says that it

requires no work to rotate m below T if h = 0, Of

course for n= 1 there is no 1 component.

Now we return to (9. 65). Note that (9. 65) is simply
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which implies that { 6tn/6h). = m/h, i. e.,
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TC[o] written in terms of m, 0 ' , and CT without specify-

ing what rn is. We need to specify m = (<J ) , or, equiva-

lently,

Equation (9.72) is an equation obtained by calculating

(0 ' ) using (9. 65). It gives an equation from which we can

solve for m. ft is equivalent to the equation 3F(m)/8m=0,

where F(m) is the free energy of 1C given by (9.65) at a

fixed m.

The perturbation expansion now must include inter-

actions involving rn and must differentiate between the i

and the 1 components, in addition to including those fea-

tures mentioned earlier in this chapter.

We summarize the new features as follows.

(a) Define G , and G , asoX ol
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where r 3 G~ (0) = h/m and r s G~ (0). If a solid line

is labeled by 1, it represents G , otherwise it repre-

sents both G , and G , .
ol ol

(b) Figure 9. 11 shows new interactions. Each

dotted line represents a factor m. The first graph is a

1 4
constant •- um for the free energy. Each m is counted

as of O(u" ). [We already encountered this fact in

Chapter III. See Eq. (3. 18). Note that a = 8u, ] Thus in

Fig. 9.11 the terms (1), (2), (3), (4), and (5) are, respec-

tively, of the order u , u , 1, 1, and u . The

term (6) = O(u) is of course the interaction included in the

perturbation expansion discussed earlier.

(c) The sum of graphs with one external line (the

"tadpole" graphs) shown in Fig, 9. 12 simply gives (0 ' ) ,

which is zero. Thus (9.72) is just the equation (sum of

tadpole graphs) = 0, from which we can solve for m.

Note that if we remove a dotted line from the graphs

for F(m) in all possible ways, then we simply obtain

graphs for 8F(m)/8m. These graphs are just the tadpole

graphs with the leg removed. Thus the equation { a ' ) = 0

is equivalent to 9F(m)/9m = 0.
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Figure 9. 11. Interaction terras involving powers of m,
(1) - (5). The last one, (6), is just u(a2)2 ,

Figure 9. 12. Graphs for < 0 ' )
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where S is the sum of self energy graphs for G . The

equation (a, ) = 0 written in terms of h, m, and r is

then thejsquajioja of state relating h, m, and r . An

equivalent equation of state is, for n £ 2, given by

r = h/m:

where r, must be expressed in terms of r . h, and rn.
1 o

As an illustrative example consider the case of

large n. We choose u = O(l/n) for simplicity. Since

-1/2 1/2
m = O(u )» we have m = O(n ). The lowest-order

tadpole graphs are shown in Fig. 9. 12. The equation

(a ' ) = 0 to this order is
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can be obtained as a function of r viao

1

o
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At the critical point we have r =r , h = 0, m = 0, and

h/m = 0. Divide (9.76) by m and subtract its value at the

critical point. We obtain

This is the equation of state to O(l) upon substituting

r, = h/m. For small r the integral in (9.77) is easily

evaluated. We obtain

which implies that (3 = 1/2. For r = r we have^o oc

The constant J is given in Table 9.1.

When  and gives
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which implies that 5 = (d-2)/(d+2). These values of (3 and

6 axe consistent with the values 1/v = d - 2 , t| = 0, and the

scaling laws to the leading order in 1/n.

The equation of state (9.76) can also be obtained

from (9. 75). The algebra is left as an exercise for the

reader. The transverse correlation function G. (k) is

to O(l). Note that G. is independent of r when h 

This means that (a ) = (Err) J d p G (p) is independent

of r and hence the transverse spin fluctuations do not
o r

contribute to the specific heat to O(l):
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On the other hand, above the critical point and h = 0, the

r in (9.??) must be replaced by an r which is nonzero.

One obtains r - r <* r ando oc

which gives a = (d-4)/(d-E). Thus (9.82) seems to give a

different exponent, i, e. , d,' = 0 for r < r . This inter-r o oc

pretation is not quite right, however. The — O(l/n) term

in (9. 82) can in fact be shown to be proportional to

(r - r )" with a = (d-4)/(d-2). This situatioc o

trates the extreme care needed in interpreting results in

1/n and e expansions. A calculation to a certain order

may not give the right exponent to that order.

The behavior of the longitudinal correlation function
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G.(k) is very different. Figure 9. 13 shows the graph for

Sj to 0(1).

We note that the first two graphs give just £ .

Therefore

where II(r ,k) is given in Table 9. 1. In particular for

k = 0 we have

which vanishes for h -» 0 . This means that (8h/9m}_,

below T vanishes for T < T on the coexistence curvec c

Figure 9. 13. Self energy graphs of O(l) for large n.
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for large n. [ Brezin, Wallace, and Wilson (1972) and

Brezin and Wallace (1973) showed that this conclusion

should hold for any n s 2. ]

8. REMARKS

It must be kept in mind that the calculation of expo-

nents by the e or the 1 /n expansion is an extrapolation

procedure based on the assumption that the results of the

RG analysis are correct. Mathematically the series in

In fc can converge only when jln k | is not too large.

Exponents such as r\ are defined by G(k)k « k for

k -*• 0, i. e., when |ln k | is very large. We rely heavily

on what the RG tells us, i. e., that the In k terra should

show what 11 is.

Sometimes there may be extra logarithmic terms

which are unrelated to the exponent or the "slow transient"

mentioned earlier. A classic example is the specific heat

calculation of Abe and Hikami (1973) to O(l/n). [See also

Ma (19 '3a, 1975). ] They showed that the specific heat be-

haves like
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where I a 2 is any integer and B is a constant. They

found that B is nonzero only when d = 2 +2/1, where

a , the O(l) term of a, is a = (d-4)/(d-2) = 1 - 1 .

which is an integer. Consequently if one calculates C/n

to O(l) the B terms cancel. To O(l/n) and at

d = 2 +2/1, the B terms appear as a logarithmic term

which is in addition to the -a,(r -r ) In (r - r )1 o oc a oe

term of interest. Of course, without knowing this peculiar

appearance of B , one would conclude from the extra log

term that a changes by an anomalous factor 1 + B. at

d = 2 +2/1 . This was in fact the first interpretation.

Later Abe and Hikami (1973) and Wilson (private
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communication) established the specific heat equation

(9. 85'). Clearly one must always think twice before assert-

ing that a certain logarithmic term reflects a part of an

exponent. There are various cases where extra logarith-

mic terms cannot be interpreted as exponents directly.

We conclude this section by mentioning two wide-

spread and often misleading statements which grew out of

a lack of understanding or carelessness.

(a) That the mean field theory and the Gaussian

approximation are good away from T . The fact is that

most many-body systems are strongly interacting and the

mean field theory and the Gaussian approximation are not

good at any temperature. The mean field and the Gaussian

approximation give good descriptions of critical behaviors

only for a weakly interacting system over a temperature

range in which the Ginzburg parameter £ is very small.

[See Sec. III. 6. ]

(b) That the interaction is weak for d near 4. Of

course the interaction strength is a special property of the

particular system of interest. It may be weak or it may be

strong. Just because we arbitrarily choose u = u (e) = O(e)
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for the sake of computing exponents, the thought that some-

how the interaction strength in general should be of Q(e)

has become widespread, A consequence of thinking that

u = O(e) is thinking that u = Q at d = 4. This of course

leads to the false conclusion that the critical behavior for

d = 4 is trivial and given by the Gaussian approximation.

In fact the critical behavior for d = 4 is far from trivial

and -will not be pursued here. As was mentioned in

Sec. VII. 5, the nontrivial fixed point approaches the trivial

one as d -*4, At d = 4 the degeneracy of the two fixed

points makes the critical behavior very complicated.

9. THE RG IN THE PERTURBATION EXPANSION

The study of the RG by means of the perturbation

expansion was already set up in Chapter VII [see Eqs, {?. 13)

- (?, 16)], and applied to the case of small e [see Sees.

VII. 5 and 6], without the aid of graphs. Now we have

developed the language of graphs. The mathematical pro-

cedure in Chapter VII can be put in & more convenient and

general form (with no change of the substance, of course),
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which is the subject of this section.

The transformation of K[o] into TC'fa] under the

RG is defined by

where a' and <t are, respectively, the long- and short-

wavelength parts of CT as defined by (7. 16) or some other

procedure. Now we write

The first term involves no ^ ; "K [<jf J is quadratic in sf

involving no o ', and 1C [$,o'] is the rest. Using the

definition (7. 16) we have

1C [cf, 0'] is more complicated. If "K[o] includes the

2 2 2 3
quartic u(0 ) and the six-power u,(0 ) terms as

shown in Fig, 9. 14a, 1C, will have the terms shown in
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Fig. 9. 14b. Note that we use a thin solid line to denote a '

and a thick solid line to denote t . Thus 3C [tf ,a '] has

odd as well as even powers of at .

Substituting (9. 87) in (9. 86) we obtain

where ( . . . ) means averaging over P [af] « exp(-K [ < r f ] ) ,

keeping 0' fixed. The major task of finding TC' fc ] is

thus the evaluation of -In (e } , which is just the free
energy for 4 with 0 ' fixed. In graph language we have

= (the sum of all connected graphs with
thin external lines and thick internal
lines) . (9.91)
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Figure 9. 14. (a) u(a2)2 and «6(o2 )3 in K[c] ,
(b) Terms in "Kj f^a ' ] .
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The thin external lines represent the fixed 0'. Each thick

internal line represents a factor (A (x-x7) = ($(x) CJ(x')) .

[The subtraction in (9.91) simply removes those graphs

without any external line, i. e, , those terras which are

cr ' -independent. ]

2
As an illustration we give in Fig. 9. 15 the O(u )

graphs which represent the terms (b) through (g) of (7.61).

The change of scale and further algebra are already dis-

cussed in Chapter VII.

Let us summarize the general definition of

R (a = p.' in graph language in the wave-vector representa-s

tion. Given n = (u . , u_ ,u . , .} representing
1 ^ 3

where k = ~k -k_ - • • • -k ,, we define 0' and 6 asm 1 2 m~l

earlier, and &..<&" (k) =u_..(k) for A/s < k < A and zeroij o Zij

otherwise. There are two steps in defining R :
a
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Figure 9. 15. Graphs representing the terms (b) - (g) of
(7.61).
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Step (i): Calculate u defined by

- (the sum of connected graphs of m
external lines) ,

where all internal lines of the graphs must have wave vec-

tors in the shell A/s < k < A , and all external lines must

have wave vectors k < A/s.

Step (ii): Obtain

which gives H ' = (u, , u' , .. ) = JR \i . The exponent f\ is
1 S& S

chosen to assure the existence of a fixed point |_iv .

The above definition is formal and makes no refer-

ence to the e or 1/n expansion. In practice it is a con-

venient definition to remember for various small-e calcu-

lations of the RG such as that in Chapter VII. More
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examples and generalizations will appear in subsequent

chapters.

Note that in (9.92) we have included odd as well as

even powers of 0 and also arbitrary indices. This has

been done only to remind the reader that there are infinite

varieties of Hamiltonians other than the ones we have been

studying. In all our earlier discussions we have assumed

complete rotation symmetry except for the magnetic field

h. The effect of anisotropy will be our next subject.

10. ANISOTROPIC PARAMETERS AND COMMENTS
ON THE LIQUID-GAS CRITICAL POINT

Anisotropic parameters are those parameters in V.

which are not invariant under rotations, as, for example,

when the field h is a vector in the spin space. Since we

are already familiar with the effect of h, we shall assume

that h = 0 in the subsequent discussion unless otherwise

stated.

In a real crystal lattice the spin interactions are

not completely rotation-in variant because the lattice itself

is not. One has to include in 1C, in addition to the invariant



where a are the anisotropic parameters and D,. are in
A A

general powers and products of o and derivatives of 0 .

Since all our previous conclusions about critical behaviors

assumed that "K = 0 , it is crucial to find out whether the
A.

presence of X -will change those conclusions. Let us
.£*

phrase this problem in the language of the RG.

Let the set of parameters \i include the anisotropic

*parameters. Let |4 be the completely n-component -
spin-rotation-invariant fixed point, which has been studied

¥jso far, and s foe the eigenvalues rized RG
transformation R in the neighborhs n

Eqs. (6. 3) - (6. 11). ] Assume that a. are small and the
A-

terms in 1C are so arranged that a. are among the t.'s
y x

 J
in (6. 9), i. e. , a' = a a , where y are the exponents

A A X

associated with a. . Then the crucial question is whether
A

y 's are positive or negative, or zero. If one or more
A

*
a, with y, ^ 0 is nonzero, then ^ is unstable and the

X X n

ANISOTROPIC PARAMETERS

terras studied so far, the terms
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previously described critical behaviors would be strongly

modified. (See the discussion in Sec. VII. 3. ) One has to

calculate the y associated with the anisotropic parameters
X

of physical interest. The study of these exponents has been

done mostly for small e or for small 1 In. We shall

briefly summarize three examples. Details of calculations

will be omitted.

(a) Spin tensor interaction

Consider the parameters a .., i, j = 1, .. ., n ,

transforming in the same manner as a traceiess spin tensor

under rotations in the n-dimensional spin space. The expo-

nent y associated with a can be obtained by calculating

a correlation function involving the tensor

(Recall that r « § ~T | . ) The result for sma
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for example
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where the quantity S, is defined in Table 9. 1. [See Ma

(1974b), Sec. 5E. Note that the summary equation (1. 13)

has a misprint in y . Equation (5, 16) in the text is cor-

rect. ] For small e one has

in K which makes the 1 direction special. Fisher and

Pfeuty (1972) studied this perturbation to O(e). If a < 0,

*
R |JL will approach the fixed point M.. for n-l because

s 1

there is an easy axis, the 1 axis, of magnetization. If

*
a> 0, R p will approach the fixed point |J . because

s n~ Ji

the 1 axis is a "hard axis, " and the system will have the

[taken from \ of Aharony (1975), Eq. (3A. 10)].
fc*

Clearly y > 0 and a is relevant. The simplest

example of a nonzero a is the uniaxial perturbation term

otherwise)
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critical behavior of an (n-1)-component spin system.

(b) Cubic interaction

A term in "K. which is invariant under the permuta-

tion of spin components but not invariant under spin rota-

tions is called a cubic interaction term by convention,

The simplest example is

(Note that £ . O. = a is rotation invar

The exponent y associated with a and related

questions was first studied by Wallace (1973). One can

find y to O(l/n) by calculating the correlation function

where the subscript c under { • • « ) denotes cumulant

average. The result is
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[see Ma (1975), Sec. V. 6], which is positive for large

enough n. The study for small e gives

[See Ketly and Wallace (1973) and Aharony (1975), Sec. V. ]

This result indicates that for sufficiently small n, y is

negative, the isotropic fixed point is stable, and a is

therefore irrelevant. For large enough n, y > 0 and a

becomes relevant and the symmetric fixed point becomes

unstable. The borderline case is at n = 4 - 2 e. + O( e )
e

where y = 0. The reader is referred to Wallace (1973)

and the papers quoted above for further details.

(c) The vector term 2* a. 6TC /6q i

Here 1C denotes the isotropic Harniltonian, the

Ginzburg-Landau Hamiltonian, for example. This is an

example of a special kind of term called "redundant"

(Wegner, 1974b), and not of physical interest. It can be

removed by a change of variable
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(assuming a, is very small). Thus a, will not appear in

the free energy. One can calculate the correlation function

involving 5TC /6a, and the associated exponent y by

the expansion methods discussed above and find that

This exponent actually implies that the correlation functions

only have a short-range behavior at the critical point. For

farther discussions see Wilson and Kogut (1974) Appendix,

Wegner (19?4b), and Ma (1974b),

The last example brings us to the subject of the

liquid-gas critical point for which the order parameter does

not have the inversion symmetry (symmetry of 1C under

0 -* -CJ) characterizing the magnetic systems. There are

other cases such as the binary-fluid critical points which

may also lack such symmetry. An important question is

whether the exponents of the liquid-gas critical points are

the same as those of the n= 1 magnetic critical points,

Experimental data so far seem to indicate some small

differences, but there has been no clear theoretical under-

standing.
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The asymmetry can be described by including odd

powers of the order parameter cr in 1C. Then one asks

how the previous RG analysis is modified by such odd

powers. Bubbard and Schofield (1973) looked into this

question. They showed that & Ginzburg-Landau-like

Hamiltonian with all powers of a can be derived for the

fluid system. For d near 4, they argued that powers

beyond the fourth could be safely dropped. Furthermore,

they observed that the 0 term can be removed by a

change of variable a •» <J + a as in Eq. (9. 106) with a

proper choice of the constant a . Eliminating 

term also eliminates the difference between the RG analy-

sis of the liquid-gas system and that of the magnetic sys-

tem. Therefore Hubbard and Schofield concluded that the

liquid-gas critical exponents should be the same as those

of the n = 1 magnetic critical exponents at least in the e

expansion. At this moment we cannot regard this conclu-

sion as final. While the O term can be re
5 7

change of variable Q -* a + a, other powers O ,0 ... etc. ,

which are important for d = 3 cannot be removed. The

asymmetry is not something superficial. So far there has
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been no serious attempt to study the RG with asymmetry,

We must remind ourselves that our knowledge of the RG

so far is quite limited to the neighborhood of the symmetric

fixed point. Global properties have not been well analyzed.

The liquid-gas critical point still remains an open problem.

11. TABLES OF EXPONENTS IN e AND 1/n
EXPANSIONS

In Table 9.2 we list the results of e-expansion cal-

culations of some exponents. An advanced and detailed

discussion on the e expansion is given by Wilson and

Kogut (1974), which also includes an exhaustive list of

references. A study of higher-order terms in the e ex-

pansion and convergence problems has been done by Nickel

(1974). Brezin, Wallace, and Wilson (1972) and Brezin

and Wallace (1973) have studied the equation of state in the

e expansion. There is a large literature on the e expan-

sion using the Callan-Symansik equation, starting with the

work of Brezin, LeGuillo, and Zinn-Justin (1973). Some

of the higher-order terms listed in Table 9,2 were calcu-

lated using the Callan-Symansik-equation approach. We



Hie first five exponents are from the collection of Wilson and Kogut {1974)
Table 8. 1, The last three are available in Aharony (1975). The constant
T is 0.60103.

TABLES OF EXPONENTS

Table 9. 2

Exponents for the isotropic n-components spin, fixed
point in the e expansion
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shall not elaborate on this approach except to remark, for

those readers who have a field-theory background, that the

Ginzburg-Landau model is mathematically equivalent to an

4unrenormalized X 0 (Euclidean) model in quantum field

4
theory. It is important to note that the \$ theqjry is, in

the conventional renormalization scheme, super-r enor-mal-

izable and X = 0 is a stable fixed point for the Callan-

Symansik equation, and hence does not describe the rele-

vant physics of critical phenomena. In this sense the

statement that "quantum field theory = classical statistical

mechanics" has little meaning. To extract what is rele-

vant, Brezin and coworkers and other authors had to use

an unconventional renormalization scheme in which the

bare coupling constant goes to infinity with the cutoff A

4-d 4
as X « A . The X 0 theory becomes renormalizable

in this new scheme,

In Table 9. 3 we list exponents in the 1/n expansion,

Abe and coworkers have carried out the 1/n expansion

farther than anyone else. Their technique is slightly differ-

ent from the perturbation method discussed in this chapter.

The reader is referred to their papers for further
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information.

In addition to their use in calculating exponents and

the equations of state, the e and the 1/n expansions have

been used for studying the correlation function G(k) as a

function of k and § . [See Fisher and Aharony (1973)

and Aharony (1973), ]



Data taken from Ma (197 3a, 1974b)

358 PERTURBATION EXPANSIONS

Table 9. 3

Exponents for the isotropic n-component- spin fixed
point in the 1/n expansion



X. THE EFFECT OF RANDOM IMPURITIES AND
MISCELLANEOUS TOPICS

SUMMARY

We discuss the effect of random impurities in some

detail, with emphasis upon basic concepts and ideas. The

RG approach needs to be formulated slightly differently

when quenched impurities are present. We also include a

brief section on the use of graphs in studying quenched

impurities. The self-avoiding random walk problem is

then discussed, and its connection to the critical behavior

of the n = 0 Ginzburg-Landau model is demonstrated.

1. RANDOM IMPURITIES

Some impurities always exist in any real material.

The study of critical phenomena must pay attention to their

359
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effects. There are many forms of impurities, whose

effects are very different. For example, in a ferromag-

netic crystal, there may be a fraction of sites occupied by

atoms which cannot produce a magnetic moment. If this

fraction is larger than a certain value, ferromagnetism is

completely suppressed. If the fraction is small, then a

decrease in T is expected. Critical exponents may be

modified. Another example is that there may be random

distortions of the lattice causing preferred directions for

spin orientations which are randomly distributed. The

4superfluid transition in liquid He in a porous medium is

yet another example.

Theoretical studies of random impurity effects on

various phenomena began many years ago. The motion of

electrons in disordered solids, the problem of percolation,

the Ising model with spins on random sites, etc. , consti-

tute a vast literature, which we shall not be able to review

here. We shall only touch upon the RC approach to the

study of effects of small amounts of impurity on critical

behavior.

The effects of impurities on critical behavior are
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expected to be very important for the following reason.

Suppose we mix a few impurities into a system near its

critical point, in effect turning on a small perturbation,

The response of the system to the perturbation is described

by various susceptibilities and correlation functions. Near

the critical point, some of these quantities are very large

and are singular functions of the temperature. This means

that a small amount of impurity can produce a large effect

near the critical point, thereby altering the critical behav-

ior of the pure system substantially. The critical expo-

nents may be modified. Singular structures of certain

quantities may be smeared out. Even the critical point it-

self may disappear. These effects are profound and still

not well understood.

Before we begin any specific analysis, let us set

straight some terminology.

By convention, impurities are classified according

to the way they are distributed in the host system, either

as annealed impurities or as quenched impurities.

Annealed means that the impurities are in thermal

equilibrium with the host system. JLet op. denote the
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variables specifying the impurity configuration. At thermal

equilibrium, the joint probability distribution for cp and the

spin configuration o of the host system is given, by

where the integral is taken over all impurity and spin con-

figurations, and K[cp , d] is the effective Hamiltonian for

the whole system — spins and impurities. To obtain the

effective Hamiltonian for <J alone, we can integrate out f

as we did previously with all uninteresting variables:

The free energy is simply

Of course, to reach thermal equilibrium one has to

wait for a time long compared to the relaxation time, which

is determined by dynamical processes which redistribute

the impurities. In fluid systems, the relaxation time is
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short. In solids, often the relaxation time is very long

compared to the time of observation of phenomena of inter-

est. Then the impurities must be considered fixed, with a

distribution prescribed by the mechanism which introduced

the impurities. For example, suppose that impurities are

stirred into the system above the melting point of the

crystal. Then the system is cooled down and crystallizes

with impurities mixed in. If the impurities can hardly

move, then their distribution is fixed at the time of solid-

ification, i. e., at the melting temperature. At lower tem-

peratures we have to speak of the behavior of spins for a

given impurity distribution. Of course, if we wait for

many, many years, thermal equilibrium will eventually be

reached between the impurities and the host. But before

that, the impurities are fixed and are called guenched.

To discuss quenched impurities, we need to be

more general. Let P[<P] denote the probability distribu-

tion for the quenched impurity configuration, and K[<p j CT ]

denote the Hamiltonian for the spins at the given impurity

configuration cp . Then the conditional probability distribu-

tion P[cp 10], i.e., the probability distribution of a
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given ep , is

Here Z[<P] is the partition function of 0 at the given im-

purity configuration cp, The joint probability distribution

for ep and o is then

Here it is absolutely crucial to note that Z o

constant but a function of cp ,

At a given «p, the free energy for the spins is

The probability distribution for 0 alone can again be found

by integrating out cp :
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Then we average it over P[<P] to find the free energy of

interest

One might feel uneasy speaking of the average'of a free

energy since free energy is not a mechanical variable

(i, e., it is intrinsically statistical and cannot be repre-

sented by an operator in quantum mechanics). Still,

Eq. (10,8) produces the right averages as a good free

energy should. For example, the average of O is

where (o ) = 83[q3]/9h is the average of o at a given cp.

Clearly, (10, 9) is given by

with 5 given by (10, 8).

Note that the formulas (10.4) - (10. 10) are all identi-

ties of probability theory. They are true for any
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probability distribution of <p and 0 . In particular they

are true if the impurities are annealed. The annealed im-

purities simply have the particular probability distribution

via (10. 1), In some literature one finds the statement that

for annealed impurities the free energy is -In { Z [cp]) ,

i. e., average the partition function first, then take the

logarithm. This is misleading unless we arbitrarily modify

the definition of the average. If we use the average over

the correct distribution (10. 11), then ( Z [<P]) has no mean-

ing. We have to write T C [ c p , o ] as K [cp] +K [cp , a] with

1C depending on cp only. Then (10. 1) becomes

If we formally regard the first integral as an averaging

process over the probability
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which is not the probability distribution function of cp , and

the second integral as a partition function Z, [cp], then Z

is { Z j [cp] ) , formally the average of Z. over P . tt

is not { Z[cp] ) . It is unfortunate that many authors inter-

change the averaging over impurity distribution and the

taking of the logarithm as a way to account for the differ-

ence between the annealed impurities and quenched impuri-

ties.

The only difference between the annealed impurities

and the quenched impurities is the difference in the proba-

bility distribution P[tp], The annealed impurities follow

the spins of the host system and vice versa, and P[cp]

depends strongly on the spins. The quenched impurities

stand firm with P[cp] not affected by the spins. The spins

distribute themselves to fit the condition set up by the

quenched impurities.

We can calculate the effective Hamiltonian 'Kfo'] by

integrating out cp , i. e.,

regardless of whether the impurities are annealed or
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quenched. For the annealed case we can use Eq. (10,2).

The total Hamiltonian K[<P , 0"] is (assuming that there is

no long-range force among <J5 or 0 ) a smooth function of

temperature, a and fip . The integration over q> in (10.2)

is expected to produce a smooth T[o] , Of course, it is

possible that the interaction is such that <p becomes the

order parameter of some critical point or behaves in some

collective manner. Here we imagine that the amount of

impurity is sufficiently small so that such things do not

happen. The "^[cr] so produced is expected to behave

qualitatively the same as those block Hamiltonians dis-

cussed in previous chapters.

For the quenched impurities, we need to use (10. 6)

for calculating "K[aJ:

Again, we imagine that the amount of impurity is small.

The quantity Z[«p], the partition function of the spins at a

given s nail amount of fixed impurity, is not a smooth func-

tion of temperature or <p near the critical point. Conse-

quently, we may not assume that ^[0] is a smooth
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function, and the RG approach would not be useful in study-

ing K[0]. It is easier not to calculate TC[o], but to study

P[<|>] and tC[cp |0] directly.

On the other hand, the P[cp] for the annealed case,

given by (10, 11), is strongly dependent on the behavior of

0 and is expected to be a singular function of the tempera-

tore. It is therefore not convenient to study P[cp] and

1C[cp ja] . It is far easier to study T[0] ,

Finally, we remark that quenched impurities are

never the only impurities. There are always other impuri-

ties which are not fixed and can adjust themselves to the

spins and the quenched impurities. Modifications of the

impurities by short-wavelength spin fluctuations which we

want to integrate out must be considered. On a large

scale, impurities are never completely quenched. They

are dressed by all kinds of things which vary with the tem-

perature and other parameters. This point will be taken

up in the next section.
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2. THE RG APPROACH TO NONMAGNETIC
IMPURITIES

We now apply the RG machinery to the study of

quenched impurities.

Recall that the Kadanoff transformation, i. e,, the

coarse graining procedure, is a central concept. This pro-

cedure eliminates certain short-wavelength modes. The

eliminated modes affect the remaining modes through their

effect on the parameters specifying the Hamiltonian for the

remaining modes. The parameters reflect the environment,

or the reservoir, seen by the remaining modes. In thermal

equilibrium, all we need is one Hamiltonian with definite

parameters. In the presence of quenched impurities, it is

no longer desirable to use the effective Hamiltonian for the

spins alone as we mentioned earlier. It is easier to keep

track of the probability distribution of possible environ-

ments, i.e., probability distribution P[cp] of the parame-

ters Cp in K[5p jo"] . Now we must note that the parameters

9 , which will be called random fields, depend not only on

the impurity configuration (which we denoted by cp before),

but also on all the eliminated modes. They can be regarded



NONMAGNETIC IMPURITIES 371

as the "dressed impurities, " i, e. , the combined effect of

impurities and the eliminated modes. Qualitatively, the

RG approach will concentrate on how the impurities are

"dressed" upon repeated coarse graining. If the effect of

impurities is diminished upon dressing, the critical behav-

ior will not be affected qualitatively. If the effect is ampli-

fied, the critical behavior will be affected qualitatively.

There are borderline cases, too.

Let us consider some explicit calculations in the

case of nonmagnetic impurities, which do not affect the

rotation symmetry of the spin system. We begin with a

Ginzburg-Landau form

which is just the old Ginz burg-Landau form with random

fields cp , cp , and cp replacing the old r , u, and c.r u e o

The probability distribution of cp is P[ep]. We can

imagine that P[cp] is a probability distribution on the
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space of cp , which is the extension of our old parameter

space to include nonuniform parameters,

We shall restrict our attention to cases where there

is no long-range correlation in cp(x) and all averages are

translateonally invariant. Let us define

No long-range correlation means

and all higher cumulants vanish unless all x, x', x", ...

are within a distance b, the spin block size, of one

another.

In previous discussions we spoke of the transforma-

tion by R of a point p to another point (Ji' . Likewises
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we can use the same definition of R to obtain V ' = R V
s s

in the extended space of cp . The only difference is that

now parameters are position dependent. Now a probability

distribution P[>P] can be thought of as describing a cloud

of points in this space. Each point moves under R . As
S

a result, the cloud flows. The center of mass and the shape

of the cloud change. In a manner analogous to the study of

gas flow, one derives formulas for the change of the center

of mass and the shape of the cloud. The quantities r , u,

c defined by (10, 1?) play the role of the center of mass of

the cloud P[cp] in the abstract 9 space. The "shape" is

characterized by various moments of correlation functions

of cp :

etc.
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We can use these quantities to characterize P fV] and

define

This defines the parameter space representing various

P[cp].

The transformation R (j = (I' is defined by the
S

following procedure.

First, we perform steps ( i ) and (ii) as we did before

on K[cpja], treating cp , cp , ep as we treated r , u,

and c, keeping in mind that cp , cp , and cp depend on x.r e> -rr TU c x-

We then get a new Hamiltonian "K '. The coefficients of

1/2 02 , 1/8 04, and l/2(vcr)2 in 1C' ar, cp ' , and
cp ' , respectively. They depend on cp , <p , and cp , We

C 3? 13, C

average these coefficients over P[<P] and call the results

r ' , u ' , and c'. Then we compute the eumulants of cp.'

via Eqs, (10, 19), for example

to obtain etc. Then we have



NONMAGNETIC IMPURITIES  3?5

The transformation \JL' = R \j. is thereby defined. The
&

above procedure must be generalized when more parameters

are needed,

Let us summarize the results of calculation to O(e).

Some details will be discussed in Section 4,

To O{ £) , it turns out to be sufficient to keep track

of ep , u, and c only. Furthermore, only A = A

plays a role and all other moments need not be considered

if we are interested in O(e) only. Thus we simply write

(I = (TQ, u, c; A) . (10.23)

The result of carrying out the above procedures for

R p = jl' is given by
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These are among the results of JLubensky (1975). If we

have A= 0, we will get A' = 0, and the formulas discussed

in Chapter VII. We clearly have all the fixed points ob-

tained there. Choosing r\ = 0, we get the Gaussian fixed

point and the stable fixed point given by (7. 70) and (7.71).

*t>

We also find a fixed point with A'** > 0 for n< 4. These

fixed points and some of their properties are summarized

in Table 10. 1. The projection of the fixed points and flow

lines in the (u, A) plane is shown in Fig. 10, 1. Note that

u' and A' are determined by u and A only, and not

affected by r to O(e2), as (b) and (c) of Eq.

show.

There is apparently another fixed point at u - Q,

A= - e /4K . This fixed point has no physical meaning

[and is called the "unphysical fixed point" by Lubensky
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Table 10. 1

Fixed points and exponents to O(e) allowing
quenched nonmagnetic impurities

Fixed Point Gaussian

0

y2
y

3

Stability Unstable

Pure

0

aable n > 4
only

Random

Stable for n< 4
unphysical for
n> 4

Information concerning O( e ) can be found in JLubensky
(1975). For n = l ,

Note that there is quantitative discrepancy between these
results obtained through Liubensky (1975) and those obtained
by Khmelnitsky (1975),

u
*

0



Figure 10, 1. Fixed points on the (u, A) plane,
(a) <X< 0. The pure fixed point is stable,
(b) a> 0. The pure fixed point is unstable
and. a new fixed point appears with A ^ 0.

(1975)] since A, A' must be positive by construction.

Recall that
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by (10. 19) and (10.21).

Table 10. 1 tells us that for n>4, the pure fixed

point is stable. The critical behavior therefore is not
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affected by the kind of quenched impurity discussed here.

When 1 < n < 4 , the pure fixed point is unstable (y > 0),

but the random fixed point is stable. The critical expo-

nents are different from those given by the pure fixed point.

For n = 1, the Ising model, the pure fixed point is unstable

but (10.24) gives no other finite fixed point for n = 1.

Khmelnitsky (1975) showed that there is a fixed point for

n =  1  w i t h  u  a n d  A *  o f  o r d e r  « / e  .  T h i s  f i x e d  p o i n t  c

be obtained when the next-order terms in A and u are

included in (10,24). Such terms are available in Lubensky

(1975), giving the values shown in Table 10. 1. Further

implications of this fixed point remain to be understood.

Clearly, y (which appears in the linearized 
F^

formula 6 A' = s 6A+ • • - ), isjust 

where a = 2 - dv is the specific heat exponent. A fixed

point is unstable when d> 0. This result is quite general

and not restricted to the first order in e , as is easily

shown by the following arguments.

First, consider a fixed point with A = 0 , i. e. ,

without impurity. Now switch on a small 6cp (x), which

means a small change in r . As a result 6cp transforms
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unde r R like 6 r , We know thats o

yi
where • • • means terms proportional to s with y, < 0,

(Recall that y is assumed to be the only positive one of

all y.'s for rotationally symmetric scaling fields. ) There-

fore we must have

The above arguments are easily generalized to fixed points

with A ^ 0, We simply add a small new random field

60 to the cp which has t
*

= A . Assume that

Jt follows from the definition of A and A' that
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as a result of 6 0 . Again 50 transforms like 6r .

Replacing 8ep by 60 » A by 8 A in (10.28), we get

i.e., a < 0,

This result is generalized to other kinds of impuri-

ties in the next section. Qualitative, Eq. (10. 32) says that

impurities remove the divergence of the specific heat. The

random field ep (x) couples to cr (x), which is

energy density or entropy density. This random field

2destroys the long-range correlation of 0 (x) and thereby

Therefore is changed to with

We therefore conclude that, in the presence of nonmagnetic

impurities, a stable fixed point must have the property
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d x (a (x) O (y )> , which

is proportional to the specific heat.

From a. physical viewpoint, the important role of the

specific heat exponent a is obvious. The random field

cp can be regarded as a random perturbation of local tem-

perature since r is linear in temperature near the critical

point. The linear response to a perturbation of temperature

is the specific heat. If a> 0, the response blows up as

T -* T , implying instability. If (X< 0, the response is

finite.

3, FIXED POINT STABILITY CRITERIA AND OTHER
IMPURITIES

The criterion (10. 32) is a special case of the more

general criteria, which are established by the same argu-

ments as those leading to (10. 32),

etc.

which
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for the stability of a fixed point in the presence of random

impurities. These criteria simply state that the parame-

ters A. . , A... , etc., defined by (10. 19), must be irrele-
d

vant. Each cp. of (10. 19) gives y. and d x gives -d in

{10. 33). Clearly that Eq. (10. 33a) which has the largest

y. ,y. is the most important equation. The

more easily satisfied. For nonmagnetic impurities, y is

the largest and thus (10. 32) is the most important criterion.

For small e the random fields cp and ep play no part

in critical behavior because A » A , A . A » andre ru cc uu

A are all irrelevant. Note that in calculating the fixedcu
2

point to O( e ), these parameters must be taken into account

along with other irrelevant parameters. (Note again that

irrelevant parameters need not be zero at a fixed point,

R will drive them toward their fixed point values, which
§

are in general nonzero. }

The criteria (10. 33) can be used to test the stability

of fixed points when quenched impurities of various kinds

are added to the system. The examples below illustrate

the significance of these criteria, and some special features

of the impurity effects.
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First, we discuss the effect of a random tensor

field.

For certain amorphous solids, the perfect crystal

lattice does not extend very far, but its lattice orientations

vary from place to place randomly. In other words, the

solid is a collection of very small pieces of crystal, each

of which has the same structure but a random orientation.

The spins in the solid interact like those discussed in pre-

vious chapters except that now they may have the prefer-

ence of lining up along an axis determined by the orienta-

tion of the lattice. Such a preference can be described by

a term

in 3C, where the vector <5p(x) lies along the preferred axis

at x. The effect of (10. 34) with cp = constant has been

studied in some detail by Aharony (1975b).

Note that
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Clearly, <p plays the role of cp discussedl
is not a constant but a random field. The first term is a

special case of the traceless tensor field q> :

We can use the criterion (10, 33) to determine whether the

pure fixed point is stable against a nonzero random trace-

less tensor field. The exponent y is known for small e

or for small 1/n. Tables 9.2 and 9. 3 give

Substituting them in (10. 33), we get

which suggests that for d < 4, the criterion (10. 33a) can-

not be satisfied and the pure fixed point is therefore unstable.
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We next consider a random magnetic field cp (x).
h

i. e,, a term

Clearly (10. 33a) cannot be satisfied unless r\>2. For a

fixed point of small T|, the instability is very serious.

In fact, the effect of a random magnetic field is so

strong for the cases n & 2 that there can no longer be a

finite magnetization for d £ 4 no matter how weak the

field is, as long as it is nonzero. [See Imry and Ma (1975). ]

We shall not prove this statement but give some strong

evidence.

It is evident that, if cp is sufficiently strong, i. e. ,

stronger than the field produced by neighboring spins, the

in 1C. We assume that
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spin configuration will simply follow the field. Since

(ep ) = 0, we must have m = { 0 ) =0 at any temperature

for any n. If the field is very weak, the situation is less

obvious.

Suppose that we start with cp = 0 and m ^ 0.

Then we turn on a very weak ep, . For n a 2, the compo-

nent of cp perpendicular to m will produce a magnetiza-

tion with Fourier components which can be expressed in

terms of the transverse susceptibility G (k):

for the given Cp to the first order in Cp , Now we calcu-
li h

late the correlation function averaged over the random

field configurations:

-2
Since G (k) « k for m ? 0, (10.43) diverges as long as

Z
lim { tcp, , I ) ^ 0, no matter how small, for d •& 4. Since

k-*Q **•

m (x) is never infinite, we have a contradiction. The con-

clusion is that the assumption m ^ 0 is wrong. Therefore
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m = 0. The above argument is not quite a proof because

only the lowest order in cp is accounted for. It has some

resemblance to the argument given in Sec. III. 7, where we

discussed the Bohenberg-Mermin-Wagner theorem.

For n = 1, the above argument does not apply, ft

seems clear that for sufficiently low temperatures and

sufficiently weak cp , m must not vanish since G(k) for

the pure system of n= 1 does not diverge for k -*• 0. The

fact that m ^ 0 for sufficiently low temperatures and

m = 0 for high temperatures of course does not imply that

there must be a fixed point. The pure fixed point with

small T\ is never stable for any n and d. It turns out

that for d>4 there is a stable fixed point analogous to the

random fixed point discussed in Sec. 2, For d £ 4 , n a 2,

we have no ferromagnetic transition at all as argued above.

For n = 1, d ^4, the situation is not yet understood.

Random impurities produce spatial nonuniformity

and sometimes anisotropy in coordinate or spin spaces

(even if statistically there is still uniformity and isotropy).

As a result, at a given configuration ?s, certain averages

do not vanish, in contrast to what we are used to dealing
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with in previous chapters. For example, if cp Is not uni-

form, then the correlation function

is no longer the same as the cumulant

because (o > may not vanish. The limit k -(

gives the susceptibility 9ra/8h, but the limit of C(k) is

entirely something else.

A more subtle example is that

is very different from

since



The specific heat is F(0), not K(0).

4. COMMENTS ON GRAPHS

The graph technique developed on Chapter IX is

easily generalized to account for the presence of random

fields. As an illustration, let us consider the model

Here we assume that tp (x) has a Gaussian distribution

with

For a given <p , the perturbation expansion in powers of

u and q> can be made. The only new element added is

the fixed external field ep . We shall represent it by a

dotted line joining two solid lines as shown in Fig, 10. 2 a.

390 THE EFFECT _OF RANDOM IMPURITIES
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The free energy and various curoulant averages can

be computed at a fixed sp • They are still represented by

various connected graphs now dressed with op lines.

Examples are given in Fig. 10. Zb for a term of free

energy, 10.2c for a term in spin susceptibility, and 10. 2d

for a term in the cumulant

Figure 10.2. Graphs -with fixed external field cpr .
(a) Basic graph element showing the coupling

1/2 02 cp r .
(b) A graph for the free energy.
(c) A graph for the susceptibility.
(d) A graph for (a2 (x) a^fx ' )> c .
Dashed lines represent the interaction u
and dotted lines cp .
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Remember that cumuiant averages are always represented

by connected graphs, with or without an external field.

Now we need to average over the probability distribu-

tion of <$ . The Gaussian property (10,49) allows us to

write the average of a product of Cp 's as a product of pair-

wise averages. Graphically, we keep track of such pair-

wise averages by pairing the dotted lines with small circles.

Figure 10. 3 shows the averages of the terms in Fig. 10. 2b,

c, d. Every circled line gives a factor A according to

(10.49).

Thus, in addition to the dashed lines representing u,

we have dotted circled lines giving the effect of the random

field cp . By construction, when the circled lines are cut,

a graph for the freejenergy or a cumuiant average must re-

mjjp^onnected. For example, the graphs shown in

Fig. 10.4 are not allowed. Note that the definition of cumu-

iant is another source of confusion. Here we mean the

cumuiant defined by averages over e *• ' •* fixed op.

The average over sp is then taken. An example is (10. 47).

If the cumuiant is defined with respect to the fall average,

e. g., (10. 46), then the situation is quite different.

r
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Figure 10.3. Averages of the graphs Fig. 10. 3b, c, d.
Each circled dotted line represents a factor
A.

Figure 10.4. These are not graphs for cumulant averages
or the free energy, because they will not
remain connected upon cutting all circled
dotted lines.
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If the random field ep does not follow a Gaussian

distribution as assumed in (10. 49), we would need to keep

track of all cumulants, for example, {cp (x) tp (x ' )cp (x"

The generalization of the graphic representation to account

for higher cumulants is straightforward. Figure 10. 5

shows some examples. In addition to joining pairs by a

circle, we need also to join three or more dotted lines by

a circle.

The generalization to include random fields other

than cp is also straightforward. For example, cp is

represented by Fig. 10. 6a. It is also possible to have

cp , cp , etc. The anisotropic random f6 8
represented by graphs. Figure 10, 6b, c shows some

examples. Finally, the cumulants of random fields may

Figure 10.5. Graphs for G(k) when cpr has nonzero
higher cumulants. The third cumulant is
represented by three dotted lines joined to a
circle; the fourth cumulant is represented
by four dotted lines joined by a circle.
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Figure 10. 6. (a) Random u» u^ , and ug ,
(b) Random tensor field, [ see (10. 36}],
(c) This graph represents a term

^rhi 0i 02 in K '

not be simply proportional to a 6-function like (10,49).

Sfach complications must also be kept track of.

We now discuss briefly the graphic representation

of the RG. First, we follow the rules in Chapter IX to ob-

tain «p' = R cp. For example, Fig, 10,7a shows the graphs

contributing to cp' up to O( u«p , Cp ). egphs for
<p' are those with two external solid lines and any number

of dotted lines as shown in Fig. 10. ?b.
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Figure 10.7. Graphs for <y'r .
(&) Graphs up to O(utpr , epr

3 ) .
(b) Form of a general graph for q)y . Note

that all solid lines except the two external
legs carry wave vectors in the shell
A / s < q < A.

Then we compute the cumulants of cp' and calculate

the new A's following (10. 19). This completes the RG

transformation f t ' = R jl defined by (10. 22) and the proce-
S

ehire described above (10.ZZ). Figure 10. 8a shows the

2
transformed A to O(A, u A , A ). It is just Fig. 10.7a

multiplied by itself and then averaged over cp . A general

graph for the transformed A is shown in Fig, 10. 8b. The

graph for r' to O( A) is given in Fig. 10,9. It is just
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Figure 10.8. (a) Graphs for A' up to G(u
(b) The general form of a graph for A'.
A' is obtained by squaring the sum of all
graphs of the form of Fig. 10. 7 b, and then
averaging over the probability distribution
of cp_ .

those in Fig. 10. 7a averaged over cp . Figures 10.8 and

10. 9 give the formulas (10. 24e) and (10.24a), respectively.

The contribution to r ' from the nonrandom parameters is

of course also included in (10. 24a).
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Figure 10,9. The O { A ) contribution to rQ'. Note that
all except the second graph in Fig. 10. 7 a
average to zero.

R q> also generates random fields of forms others

than those included in (10. 48). Figure 10. lOa shows the

2
graphs for cp' to O|uCp , ucp ). Figure 1

general graph for ep ' generated by R Cp . The averageu s

of Fig. 10. lOa contributes to u ' and accounts for the

O(u A) terra in (10.24b). If one assumes that A, u , and

r are all of O(e), then (10.24) gives the fixed points

and exponents which are consistent with such assumptions.

New parameters such as the third cumulant of cp' shown

in Fig. 10. 11, can be consistently ignored to this order.
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Figure 10. 10. (a) Graphs for cp^ , O(q> ru), and O(cp^ u).
(b) General form of a graph for cp^ .

Figure 10, 11, The leading contribution to the third cumu-
lant of CD 1 . It is of O( A 3 ) ,
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5. THE SEJLF-AVOIDING RANDOM WALK PROBLEM

Consider a particle which moves & step at a time.

Each step is assumed to be very small and is taken random-

ly. If the probability for each step is entirely independent

of the previous history and the location of the particle, then

we have the well known problem of random walk, or

Brownian motion, or diffusion. If the additional feature is

added that the particle tends to avoid the places it has been

before, we have the self-avoiding random walk problem.

We shall study it here because it is formally equivalent to

a Ginzburg-Landau model of n = 0. This equivalence was

pointed out by DeGennes (1972). This problem is also

equivalent to the long polymer problem. [ See Fisher

(1965), for example, for detailed discussion and refer-

ences. ]

The quantity of final interest is P(x, t), the proba-

bility distribution of the particle at time t given that the

particle is at x = 0 at t = 0, i.e., P{x, 0) = 6(x).

There are different possible paths for the particle

to go from 0 to x in a time interval t . Let us denote a
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path by Z ( T ) . The probability that the particle will take the

path Z ( T ) is a product of the probabilities for all the steps

making up the path. Let this probability be formally de-

noted by dP(z | x, t). Then we have

where the integral is a formal notation for summing over

paths Z ( T ) which begin at (0, 0) and end at (x, t),

In the absence of any self-avoiding tendency, we have

simply the diffusion process, denoted by the subscript o:

P satisfies the diffusion equation

where c is the diffusion coefficient. The solution of

(10. 52) is well known:
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The root-mean-square distance traveled over a period t

1/2
is thus proportional to t

The problem is to find out how the self-avoiding

tendency alters (10.53).

The self-avoiding tendency reduces the probability

for paths which visit a place more than once. We shall

assume that, for a given path z , the probability of a

particle's visiting Z ( T ) and Z ( T ' ) when Z ( T ) is very

close to Z ( T ' ) is reduced by a factor proportional to

where v(z - z') > 0 if | z - z ' | is shorter than some

very small distance and zero otherwise; AT and At ' are

the time intervals during which the particle stays at Z ( T )

and Z ( T ' ) , respectively. This factor (10,54) is a phenom-

enological description of the self-avoiding tendency. The

total reduction factor is the product of factors of the form

(10. 54) for all T, r' between 0 and t, which is
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Summing over all paths, we obtain

where N is a normalization factor. The task is then to

evaluate this integral. Rather than attempt this here, we

shall show how this task can be related to solving the n. = 0

case of the Ginzburg- Landau model.

Expanding (10.56) in powers of v, we obtain

Now we order every possible set of values of

T , T ' ... T , T ' , in the integrand and rename them
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arid define

Between any of the time intervals (t, , t. .), the particle

random walks according to the diffusion equation. The

integration over paths in (10, 57) can be carried out first

for a fixed set of x^ ; we simply obtain

We then integrate over x „ « . x_ . Now every terra can
J, L* U

be represented by a graph. We start from the origin. We

draw a line from the origin to x , then a line from x to

x. ,.,., and finally a line from x~ to x. Every line
£t & 33.

represents a factor P in (10. 60). Now we pair up the

points x ... x and join them pairwise by dashed lines1 i.*n,

representing the -v's in (10. 57). Figure 10.12 shows an

example. It should be obvious that the P(x, t) is the sum

of all graphs with a continuous solid line going from 0 to

x and decorated with dashed lines with ends attaching to

the solid line. Such graphs are just those for the
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Figure 10. 12. Graph representation of a sequence of
random 'walks from 0 to x^ ,
Xj to x_ , . . . , x2 n to x. Every dashed
line represents a factor -v(x j -x- ) .

correlation function G(k) of a Ginz burg-Landau model

discussed in Chapter IX, provided that all closed loops of

solid lines in graphs for G(k)_ are^excluded. Excluding

closed loops is equivalent to setting n = 0. We have thus

shown that graphs for P(x, t) are graphs for an n = 0

Ginzburg-Landau theory. To relate P(x, t) to G(k) quanti-

tatively, we take the Fourier and Laplace transform of

P(x,t):

which is just what we called G (k). Since v{x) has a

Then (10. 52) gives (note that N=l for v = 0),
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short range,

is roughly a constant independent of k . Then graph by

graph we can show that

Suppose that we take for granted that our knowledge

about the critical behavior of the Ginzburg-Landau model

of n a 1 at least applies qualitatively, even when n = 0.

Then there should be a critical value r of r . and
oc o

singular behaviors of r(k. r ) for small k and r - r
o o oc

are expected. We should have
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for sufficiently small k and r - r , where7 o oc

and where f is some function independent of r - r and
o oc

k except through the combination k§ . From (10. 66} and

(10, 67) we can deduce some properties of P(x, t) for

large x and t. When we let r -r = X and use X as
o oc

an integration variable, we obtain from (10. 65)

where N' is the normalization constant to assure that

J d x P(x, t) = 1. Note that a fa appears in
(10. 65) as we change the integration variable from r to

X via X = r - r . This factor, being independent 

drops out when we normalize the probability distribution.
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In view of (10.68), the characteristic distance is

t at the time t. Recall that the root-mean-square dis-

tance in the absence of any self-avoiding t

as given by (10. 53).

Another quantity of interest is P(0, t) for large t,

which tells how the probability decays at the place where

the particle started. We note that in the Ginzburg-Landau

model

which implies that

which in tarn implies that
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for large t. We write a 5(t) term only to remind the

reader that there are short time variations in P(Q,t) not

derivable from the kind of qualitative arguments here.

What we need now are the values of these exponents

for n = 0. So far the only place where we can get an esti-

mate of them is the small e results. We set n = 0 in

Table 9. 1 and list the results in Table 10.2. If we set

Y = 1 and v = 1/2 in (10.68), the result is consistent with

(10,53). That is, Eg. (10.53) is just the Gaussian approxi-

mation for (10. 68).

We see that v is greater than 1/2. Thus t gives
1/2

a larger distance than t predicted by the diffusion

Table 10.2

Exponents for n = 0 to O(e )
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equation. Intuitively, this is expected. A tendency to avoid

places visited before should make the probability distribu-

tion spread out more. Again, if we put a = 2 -d/2, the

value under the Gaussian approximation, we get

-d/2
P(0, t) oc t , which is consistent with (10. 53). Note

that -2 + a = -dv. The v given by Table 10.2 is larger

than 1/2. Thus the self-avoiding tendency makes the prob-

ability at x = 0 decay faster.

The self-avoiding random walk problem is mathe-

matically identical to the problem of a long flexible polymer

chain. The chain is analogous to the path of the random

walk and the length of the chain plays the role of the time t.

The relative position between the two ends of the chain

plays the role of x. The atoms making up the chain are

not penetrable. This makes the chain behave like a self-

avoiding path. In view of the above results, the distance

between the two ends of the polymer chain is expected to be

proportional to the length of the chain raised to the power v ,

A related problem to the self-avoiding walk is the

self-attracting walk. Suppose that, instead of avoiding

places visited earlier, the particle tends to walk back to
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these places. This tendency can be described also by

(10, 54), but with a negative v. We can use the same argu-

ment to conclude that this problem is equivalent to the

Ginz burg -Landau model of n = 0, but now with u < 0. (Of

course, we need to require that u > 0 in order that the

Ginzburg-Landau model has any meaning for positive

integral values of n. For n ~ 0, such a requirement is

not needed. ) The important question is whether the criti-

cal behavior of such a model is similar to that derived

from models with u > 0. The answer is, in view of various

results, that it is not. Consequently, our knowledge of

critical phenomena is not helpful in understanding the self-

attracting random walk problem unless sophisticated meth-

ods of analytic continuation is invented to utilize the u > 0

results for u < 0 cases.

An interesting aspect of the self - attracting walk

problem is that it is also equivalent to the problem of

electronic motion in a random potential. The equivalence

can be established graphically. Let T(x, t) be the solution

to the electron Schrodinger's equation
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where Hp(x) is the random potential and T satisfies the

initial condition T(x, 0} = 5(x). We define

where the average ( . . . ) is taken over the probability-

distribution of 9 , In the absence of cp(x), G=G ,

2
where we have set -fe /2m = 1 for simplicity. In the pres-

ence of <p , we solve (10.74) in powers of cp , and get the

usual Born series,

as shown in Fig. 10. 13a at a given op . Each solid line is

a factor G and each dotted line a factor cp . Now we

assume that cp has a Gaussian distribution
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Figure 10, I3b shows the average of Fig. 10. 13a. Dotted

Iine0 are paired up to form circled lines, each of which

gives a factor A, just as in our treatment of random fields

earlier in this chapter. Clearly Fig. 10, I3b looks just like

2 -1
Fig. 10.12. In fact, if we identify GQ(k, E) with (rQ-fk ) ,

i.e., -E ~* r , A with -u, then G(k, E) becomes G(k)

Figure 10. 13. (a) A term in the Born series for the
electron propagator T in the potential
ep,

(b) To obtain the average of the Born series
over the distribution of q), we pair up
the dotted lines in all possible ways to
form circled lines.

413
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of the n = 0 Ginzburg-Landau model with u = - A » i. e.,

Ffk, r ) of the random walk problem with a negative v.

If the random potential has a probability distribution

which is more complicated than a Gaussian, then the prob-

lem will be equivalent to an n = 0 Ginzburg-Landau model

with more complicated interactions.

6, OTHER NON-IDEAL FEATURES OF REAL SYSTEMS

Oar discussion on the RG approach to critical

phenomena thus far can be simply summarized as follows,

(i) Given the system of interest, we approximate

the Hamiltonian by an isotropic n-component short-range

interacting spin Hamiltonian. The tentative conclusion is

that the critical behavior of this system is given by the

fixed point which we have discussed all along. The critical

exponents associated with this fixed point are determined

by numerical approximations or the e and 1 /n expansion

schemes as discussed in Chapters VII, VIII, and IX. Such

critical behaviors will be referred to as "ideal. "

(ii) Then we turn on the parameters ignored in the

above approximation for the Hamiltonian, and refer to
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them as "non-ideal. " We have discussed anisotropy and

impurities as examples. If these parameters are irrele-

vant at the ideal fixed point, the critical behaviors will

remain ideal, provided that these parameters are suffi-

ciently small. If they are relevant, then the ideal fixed

point is unstable and the critical behaviors will be those

described by another fixed point, or there may no longer

be any critical point.

In a real system there are often other non-ideal

features besides anisotropy and impurities. One has to

check all of them and determine the stable fixed point, if

any, in order to find the correct critical behaviors. Many

of them are unexplored. In the following we shall only

mention briefly a few relatively simple and important non-

ideal features.

(a) Dipole interaction

The interaction between magnetic dipoles in a

ferromagnet is important owing to its long range. In three

dimensions we have the familiar form
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for the dipole interaction energy, where g is a constant.

The subscripts denote spin components and coordinate

components (n = d = 3). The most important effect of the

dipole interaction is that the shape of the sample becomes

very important when an external magnetic field is turned

on. The net magnetic pole layer on the surface screens

out a part of the applied field in the sample. In theory and

in the experimental data for ferromagnetic critical behav-

ior, the applied field h is meant to be the true applied

field plus the field due to the surface pole layer (or "the

field corrected for demagnetization").

Apart from this surface effect, the strong angular

dependence of the dipole interaction is such as to make it

2
effectively short-ranged. The parameter g in (10. 79) is

relevant and there is a new fixed point for dipolar critical

behaviors, but the new exponents are found to be close to

the ideal ones — so close that experimental detection of

the difference would be difficult. The papers by Fisher and

Aharony (19?3), Aharony (1973), Bruce and Aharony (1974),

and references therein should be consulted for details.
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(b) Lattice vibrations

The ideal spin systems which we have been discuss-

ing are rigid mechanically. If the elastic nature of the

lattice is taken into account, many complications arise,

Several authors have investigated this problem, e. g.,

Sak (1974), Wegner (1974), Imry (1974), Rudnick et al.

(1974), Aharony and Bruce (1974), etc. The conclusions,

however, are not clear. The boundary condition, i, e.,

whether the pressure or the volume and shape are held

fixed, the lattice symmetry, the anharmonic terms in the

elastic part of the Hamiltonian, etc. , all seem to be of

qualitative importance. No one has put everything together

in a reasonably clear fashion.

(c) Effect of gravity

In doing experiments near the liquid-gas critical

point, we cannot ignore the pressure gradient in the sample

due to gravity. Only a small layer of the sample can be at

the critical pressure, and the system is no longer uniform.

A discussion of the effects of gravity on certain experi-

ments is given by Splittorff and Miller (1974).
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(d) Gauge fields

The coupling of the magnetic vector potential, which

is an example of a gauge field, to the superconductive order

parameter (the Cooper pair amplitude) changes the critical

point to a first-order transition. [See Halperin, Lubensky,

and Ma (19?3). ] Very qualitatively speaking, the presence

of a nonzero order parameter strongly affects the long-

wavelength thermal fluctuations of the magnetic field

{essentially the Meissner effect). The Hamiltonian for the

order parameter, after the magnetic fluctuations are inte-

grated out, acquires a nonanalytic term as a result and

leads to a first-order transition. Similar situations appear •

in some critical points observed in liquid crystals.

There are many interesting topics which we have

left out. Among them are the bicritical, tricritical, and

multicritical phenomena, displacive phase transitions in

crystals, surface phase transitions, various other formula-

tions of the EG, various approximation schemes, etc. They

are materials for advanced study. We shall conclude this

chapter by mentioning several general references for

advanced topics.
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Wilson and Kogut (1974) is an exhaustive review of

the RG and the e expansion. It contains a, complete list

of references.

A new review by Wilson (1975) contains his numeri-

cal RG study of the two-dimensional Ising model, as well

as a detailed exploration of Ms RG solution of the Kondo

problem.

A book edited by Bomb and Green (1976) (which is

the 6th volume of the "Phase Transitions and Critical

Phenomena" series), contains several advanced reviews.

A book by Toulouse and Pfeuty (1975) provides an

elegant exploration of a wide range of topics.

Conference proceedings edited by Gunton and Green

(1973) contain short lectures and dialogues reflecting the

state of knowledge at that time, Mich progress has been

made since then, but many fundamental questions raised

there still remain unsolved.



XI. INTRODUCTION TO DYNAMICS

SUMMARY

Elementary concepts of Brownian motion and

kinetic equations are reviewed in preparation for studying

dynamic (time-dependent) critical phenomena. The motion

of a harmonic oscillator is analyzed to illustrate basic

concepts such as mode-mode coupling, elimination of fast

modes, and correlation and response functions. The

van Hove theory is discussed,

1. INTRODUCTION

Now we turn our attention to dynamic, i. e. , time-

dependent, phenomena near critical points, a subject which

420
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is still in its developing stage,

In studying static phenomena, we were interested in

consequences of the thermal equilibrium probability distribu-

tion of the configurations of spins or other quantities. The

problem of statics is essentially a problem of statistics.

The study of dynamics is a much more complicated problem.

We need to know the time evolution of configurations, how

physical quantities change under external time-dependent

disturbances, and how the equilibrium probability distribu-

tion is reached after disturbances are turned off. Dynamic

phenomena are much richer in variety than static phenom-

ena, including, for example, diffusion, wave propagation,

damping, inelastic scattering of neutrons or light, etc. In

the study of critical dynamics, we are mainly interested in

the time variations of the large-scale fluctuations of the

order parameter and other slowly varying physical quantities

near the critical point. Qualitatively it is easy to understand

why the order parameter varies slowly in time. Imagine a

spin system. Near its critical point, configurations with

large spin patches are favorable. In each patch there is a

net fraction of spins pointing in the same direction. As we
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mentioned in Chapter I, thermal agitations will flip spins at

random. Owing to the large sizes of the patches, it would

take a long time for the thermal agitations to turn a whole

patch of spins around. In a more formal language, we say

that long wavelength modes of spin fluctuations have verj

long relaxation times. Often this is referred to as

"critical slowing down, " There are also other reasons

for long relaxation times, mainly conservation laws, for

various quantities. Observed dynamic phenomena near

critical points are all characterized by long relaxation

times. A theory of critical dynamics must explain how

these long relaxation times come about in terms of small-

scale interactions among spins, how they depend on the

temperature, and how they are affected by conservation

laws and other features. Of course, if we were able to

derive critical dynamics from microscopic models via

first principles, then we would have a theory. The criteria

for dynamic models are subject to the same kind of discus-

sion as those for static ones in Sec. II. 1 (which should be

read again if forgotten), except that many new complica-

tions arise for dynamics. In statics, the model provides a



INTRODUCTION 423

basis for statistics, which is essentially the counting of

configurations. In going from model (1) to model (5) of

Sec. II. 1, the configurations of spins are more and more

coarse-grained, but there is no essential difference among

the models. For dynamics, we need to do much more than

count configurations — we need equations of motion for

studying time evolutions. At the level of models (I) and (2),

the equations of motion are furnished by time-dependent

Schrodinger equations. Because such equations are time-

reversal invariant and do not directly describe any dissipa-

tion, they are impractical for studying critical dynamics.

At the level of models (4) and (5), the coarse-grained spin

configurations will be described by time-irreversible equa-

tions of motion, which contain dissipative terms. These

terms are a result of random thermal agitation over a

scale of b, the size of a block. Such equations will be

called kinetic equations. The derivation of kinetic equa-

tions from Schrodinger's equations for various systems is

a very difficult task, which has still not been completed

and to which a very large literature has been devoted. We

shall not take a microscopic approach. Instead, we shall
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write down phenomenological kinetic equations, which are

constructed under plausible assumptions and general re-

strictions. These assumptions and restrictions will be

motivated by microscopic considerations. Such kinetic

equations will serve as the basis for our study of critical

dynamics.

In the remainder of this chapter we shall explain

the intuitive basis for the construction of kinetic equations

and the van Hove theory. Much of this material can be

found in textbooks on elementary kinetic theory. We in-

clude it here not only for the sake of completeness, but

also in order to emphasize the fact that basic ideas are not

very complicated,

In the chapters following this we shall apply re-

normalization group ideas to the study of dynamics of some

simple model systems. Dynamic scaling and the extent of

universality will be explored within the framework of the

EG. The approach here will be along the lines taken by

Halperin, Hohenberg, and Ma (1972, 1974) and Ma and

Mazenko (1974, 1975). There has been a great deal of

recent work in this area by many other authors. Advances
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made before the use of the RG form a much larger litera-

ture. Formulations of dynamic scaling, mode-mode coup-

ling, and other ideas were put forth by Kadanoff, Kawasaki,

Balperin, Hohenberg, Terrell, and many others. A review

of experimental results can be found in Stanley's book

(19?D.

2. BJROWNIAN MOTION AND KINETIC EQUATIONS

The kinetic equations which we shall use later for

critical dynamics are generalizations of equations for the

Brownian motion. Generally kinetic equations describe

the time evolution of a set of physical quantities of interest.

There are two distinct mechanisms for time evolution,

(a) regular or organized motion, and (b) random or dis-

organized motion. The regular motion follows time-

reversal invariant laws of dynamics and is all one has in

a microscopic theory. It will be termed the "mode-mode

coupling" part of kinetic equations. The random motion is

the result of processes not explicitly included in the kinetic

equation. It generates statistical distributions for quantities

of interest and is responsible for time-irreversible effects.
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It will be described phenomenologically by decay rates and

noises in kinetic equations. We shall illustrate these basic

features by considering the Brownian motion of a harmonic

oscillator.

Let us forget about critical phenomena for the

moment. Consider a harmonic oscillator with the familiar

Hamiitonian

We call q and q modes. We shall refer to the (q ,»q , )
X £* '""' X £*

plane as the phase space. The motion of the oscillator is

thus represented by the motion of a point in the phase

space. In the absence of any other force, the velocity

(v., v ) of the point in phase spac

Let us introduce the notation
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which traces out an ellipse. Now suppose that the oscillator

is immersed in a viscous fluid, i. e. , in contact with a ther-

mal reservoir. The effect of the reservoir can be approxi-

mately accounted for by a damping on the oscillator and a

random force, as given by the phenomenological kinetic

equations:

where T /T is a constant and (-F /T) 9H/8q = -T q /mT

is simply a frictional force. It gives a velocity in phase

space pointing in the direction of decreasing energy. £ (t),

a random function of time, is the random force of "noise. "

What is the reason for defining the damping term with an

extra factor 1/T? The reason is tohave the dimensionless

combination H/T instead of H appear in the kinetic equa-

tion. Experience has told us that H and T most often

appear together as H/T. The average value and the cor-

relation function of the noise are assumed to be
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where the average is taken over the assumed Gaussian

probability distribution of £ , and 2 Ds
Equation (11.5) simply says that the random forces at dif-

ferent times are not correlated and have zero average at

all times.

Equations (11.4) and (11.5) define the motion com-

pletely. They are just the Langevin equations for the

oscillator. If (q , , q_ ) is at a given point at time t = G,
j- £*

(11.4) tells us that the average value of (q.,q,) will go
i £

around in an elliptic orbit whose size diminishes as a

result of damping. Eventually, the average value of (q, ,q,)
i £*

will become zero. The cause of an elliptic orbit is the

velocity (v.,v ). The energy is transferred from kinetic

energy q. /2m to potential energy —

as a result. This (v , v ) is a prototype of the mode-
coupling which Kawasaki introduced in his study of critical

dynamics. Here (v,,v,) "couples the q.-mode and q -
J. &> *• £•

mode. "
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Of course, only the average value of (q. ,q ?) dimin-

ishes. The motion becomes more random but never ceases

because the random force £ ^{t) in (11.4) keeps on acting.

As t -*• « » the oscillator comes into thermal equilibrium

with the reservoir and we get an equilibrium probability

distribution for (q , q?). It is of interest to know how the

probability distribution evolves in time.

Let P(q., q_, t) dq..dq be the probability of find

the oscillator in the area dq dq at (q. ,q,K Equations
i £> 1 &

(11.4) and (11,5) lead to a Fokker-Planck equation for

P(q.,q_,t), which can be written in an appealing form:
X £»

with

with v. given by (11. 3), T =0 for our harmonic oscillator.
i &

Clearly ( l l .&a) is just a continuity equation in the phase

space (like the usual 8P/8t + V • J = 0). The probability

current J. has three terms. The first one is generated
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by the nonranclom velocity v. , The second is generated by

the velocity toward lower energy due to damping, and the

third is a diffusion current toward lower probability. We

have written (11.6) in a generalized form applicable to

many cases. A more careful derivation of the Fokker-

Planck equation can be found in textbooks. The coefficient

of P in J. and that of -9P/8q, can be calculated via
i ^i

respectively. Here Aq. is the change of q. in a time

interval At, which is large compared to the time over

which noise is correlated, but still small compared to the

time over which q. changes appreciably. If one uses the

generalization of (11.4) and (11.5), namely,
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with ( C - ( t ) > = 0 understood, one easily shows that (11. 7a)

and (11. 7b) are just F./T and D. , respectively.

Equations (11. 6) and (11. 8) provide a phenomeno-

logical description of Brownian motion in a phase space of

any number of coordinates. The question of how realistic

this description is must be answered by more microscopic

studies.

Let us note a few general properties of (11. 8). The

velocity vector v. must be orthogonal to the "gradient

vector" 3B/8q, if the total energy H is conserved in the

absence of the damping and random force:

which is simply the dot product of the vectors 9H/9q. and

v. . The Liouviile theorem says that

i. e,, the vector v, is divergence-free in phase space.

For a stationary probability distribution, i. e, , 8P/9t = 0,
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(11. 6a) tells us that

and J. is calculated via (11.6b) plus the relation

which is the so-called Einstein relation. Note that (11.9)

and (11. 10} are crucial in guaranteeing (11. 12) to be a

stationary solution of the Fokker-Planck equation. Since

we want the equations of motion to generate the equilibrium

probability distribution (11, 12) for t-» •*> , it is necessary

to satisfy ( X I . 13).

3. RELAXATION TIMES

Suppose that a quantity such as q. assumes a cer-

tain value at time t=0 . Subsequently the value of q.(t)

becomes uncertain (and can be described by a probability

This equation is satisfied if
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distribution). After some time the average value of q.(t)

will approach its thermal equilibrium value. This some

time is the re taxationtime (often referred to as the decay

time), of the mode q, . Some modes have short relaxati

times, some have long ones.

We can solve equations such as (11.8) and obtain

relaxation times. In general, the forms of H and v, as

well as the values of T. all play interrelated roles in deter-

mining relaxation times. As a simple illustration, let us

go back to the kinetic equations (11.4) for the harmonic

oscillator.

Clearly the thermal equilibrium average value of q

and q is zero. To obtain relaxation times, we solve for
&

the average values of q.(t) given the initial values q.(0).

Now suppose that we neglect v. in (11.4). Then the modes

q. and q are decoupled, and w

This means a relaxation time mT/T. for q. . Since
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{ q_ ) never changes according to (11. 14), the relaxation

time for q_ is infinite, which is contrary to what we ex-
&»

pect of a, harmonic oscillator. Of course, we know the

motion of a harmonic oscillator too well. The mode-mode

coupling terms v, cannot be ignored. In fact, we know

how to solve equations with v. easily by taking linear

combinations of (11.4), Let

Then we obtain from (11.4)

where T are the relaxation times given by

Let us assume that F./Tm »
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Thus we have a "fast mode" q with a shorter relaxation

time and a "slow mode" q with a longer one. These

simple results illustrate the important role of the mode-

mode coupling terms v. in (11.4),

4. ELIMINATION OF FAST MODES

In our study of static critical phenomena, the elimi-

nation of short-wave length modes played an important part,

especially in the renormalization group. In critical dynam-

ics, we are concerned mainly with modes with long relaxa-

tion times. The elimination of modes with short relaxation

times will again play an important part. In statics, the

elimination was effected by integrating out the unwanted

modes in the probability distribution. In dynamics, the

elimination process is effected very differently. As a

simple illustration, let us return to the harmonic oscillator

equations.

If we make use of (11. 16), then the elimination of

the fast mode is trivial, namely, simply dropping the equa-

tion for q . This simplicity is a special property of the

harmonic oscillator and does not appear in more general
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problems. It is more instructive toexamine (11.4). Let us

eliminate q by solving (11. 4a) for q and substitute it in

(11. 4b):

where y = T /(Tm) ** 1/f • Over a period of time long

compared to T but still short compared to T , q.Jt)
T - £*

can be taken as approximately constant. Equations (11. 19)

and (11. 20) reduce to
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From (11. 20) and (11. 5), we obtain

Equations (11. 21) and (11. 24) have the form of (11. 8). It

is easy to verify that T' = D' , What we have just done is

eliminate q. , the momentum of the oscillator, which now

acts as a noise for the remaining variable q , the coordi-

nate. Note that (11, 21) is equivalent to the equation for

q in (11. 16) as far as variations over a time long com-

pared to T = I / Y are concerned. Equation (11.21) does

not describe the details of q over a time scale T

Apart from such details, q is the same as q
£* *™

The elimination process also reveals the limitation

of the general form (11.8) of kinetic equations. In (11.8),

q, are the modes of interest. The effects of all unwanted

modes are included in the noise £. . The property (11. 8b)

of the noise is a good approximation only if the relaxation
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times of the unwanted modes are much shorter than the time

scales of interest for q. . [This condition allows us to re-

place (Y/2)e~Y' * ' by 6{t-t') in (11

Of course there are many other important features

of elimination processes which are not revealed by the above

simple illustration. We shall eventually be interested in

elimination processes involving virtually an infinite number

of modes coupled nonlinearly, namely coarse graining proc-

esses like those we discussed in statics. Sometimes the

eliminated modes cannot be simply described as noise.

There may be combinations of them which appear as impor-

tant new modes. An example is the heat diffusion mode,

which will be discussed later, (See Sec, XIII. 2. )

The relaxation time (F'K/T)"1 = (TK/F^"1 given

by (11.21) is just T given by (11. 18). Note that K is the

ure of the potential well — Kq (see p. 4Lt £*

The flatter the well, the smaller the K and hence the longer

the relaxation time. The flatter well has a smaller driving

force toward the center. It also gives a bigger spread in

the equilibrium probability distribution for q_ , namely,
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This is consistent with (q_ ) ~ D' T , whi

takes a time T for the diffusion process to achieve the

equilibrium distribution for q .
Li

5. RESPONSE FUNCTIONS AND CORRELATION
FUNCTIONS

Response functions describe how the system be-

haves under very weak perturbation. Suppose that some

perturbation causes H to change into H'

Then -8H/8q, changes into -8H/8q. + f.T. We

-8H/9q. is a gradient vector in the phase space pointing

in the direction of steepest decrease of energy. It is con-

venient to regard it as a force. Thus f. is the perturbing

force. As a result of f. , average values of various quanti-

ties are modified. If f, is very small, then the modifica-

tion is approximately linear in f. . We write



440 INTRODUCTION TO DYNAMICS

G.. are called the response functions. As a simple ex-

ample, let us add a force f to -(9B/8q)/T in (11. 21)

(dropping the subscript 2 for simplicity). We get

The solution is trivial:

where

is the response function.

Now we leave out the perturbation and define the

correlation function C.. asy

Here we assume that {q . ( t )> = 0 in the absence of the per-

turbation. In terms of Fourier transforms, we have
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or in Fourier transforms

where G(ui) is given by (11. 31). From (11. 24) we obtain

where we have used the relation T' = D'. The relation

between C(ou) and the imaginary part of the response func-

tion G(ue) given by (11. 35) is the "fluctuation-dissipation

theorem. "

Again we illustrate this with (11, 21) which gives

Therefore, (11. 33) and (11. 34) give the correlation function
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6. THE VAN HOVE THEORY

In subsequent study of critical dynamics, we shall

examine models described by kinetic equations like (11. 8),

The modes q. will be the Fourier components a, and

other quantities which are expected to have long relaxation

times. Instead of two modes, we shall have virtually an

infinite number of modes, and solutions to the kinetic equa-

tions will be very difficult to obtain. Let us start with the

simplest model, the van Hove theory. More general dis-

cussions will follow,

The van Hove theory, often called "the conventional

theory, " is a simple model without mode-mode coupling.

Let us consider a Ginzburg-Landau form of H in the

Gaussian approximation (3. 28) for T> T :

Here we take n= 1 for simplicity. Then (11. 8) has the

form
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For the moment, let us assume that F, = T , independent
J£

of k. We can write (11.37) in terms of 0{x,t):

As before, it is understood that 0(x, t) contains only

Fourier components with k < A. Equation (11. 38) explicit-

ly describes the dynamics over a region 

a "local" equation of motion, in the same spirit as model

(5) discussed in Chapter 11. It should be kept in mind that

our purpose here is to derive critical dynamics, which con-

cerns large-scale behaviors, from local equations of

motion, which are based on dynamics over a much smaller

scale. The phenomenological constant F and the random

field £ are supposed to simulate the effect of dynamical

processes over a scale A , Therefore, F is expected
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to be a smooth function of temperature and can be con-

sidered to be a constant within a small temperature range

near T . This is the same argument as that in Chapter II

leading to the conclusion that parameters in the block

Hamiltonian are smooth functions of T.

Now let ue return to the Fourier component repre-

sentation (11. 37). Clearly, each mode is independent of

other modes and has a relaxation time given by

In the limit of small k ,

where we have substituted a'(T-T ) for a and x is

the static susceptibility as given by (3, 25). As T -*• T ,

X and therefore T diverges. This divergence of
1C
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relaxation time is a crude description of the "critical slow-

ing down" mentioned earlier. Intuitively, this result is

rather obvious. As far as the mode a, is concerned, the
K.

"? "?
effective Harnjltonian is just (a -f ck ) |d | , As a function

& *c

of 0 , this is a parabolic well. (See Fig. 11. 1. Here a,
|C K

plays the role of q . ) For k -» 0, a = a'(T- T ) -* 0,
£* £ * £ * ' &

this well becomes flat and it will take a very long time for

{0, ) to relax toward the center of the well. The flattening
Is

of the well was seen in Chapter HI as the reason for large

fluctuations of CT .
JcC

The relaxation time (11.40) can be expressed in

terras of 5 = (a /c) , the corrgth:
£-1

Figure 11. 1. The potential (l/ZjKq^ vs q2

(a) Large K. (b) Small K.
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The dynamic scaling hypothesis, which will be discussed

later, says that, for T -* T

where z is called the "dynamic exponent" or "character-

istic time exponent, " and f(y) is some function independent

of T - T , Equation (11.41) says that z = 2, f(y) =

(1 + yf * (ZcFf * .

It is clear that (11. 39) is of the form

where G(k) is the static correlation function in Gaussian

approximation. Suppose that we do not treat H by

Gaussian approximation. It is not inconceivable that

(11.43) may hold with the exact correlation function G(k).

If this is true, then

c
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since we know that G(k) is § times a function 

for T -* T . We shall show later that in many cases

(11.44) is not true.

We have so far taken T. of (11. 37) as a constant.
M

More generally, we should consider the k dependence of

I* . Let us write F as an expansion:
k Ic

Note that T, must be a smooth function of k because it is
k

based on the behavior of spins over a block, i, e. , a small

distance b ~ A . A s long as F / 0, the above discus-

sions are unchanged when k is sufficiently small. How-

ever, there are systems in which certain conservation laws

force r to zero. For example, for an isotropic Heisenberg

ferromagnet, the total spin, i. e. , the k = 0 mode, is a

constant of motion as a consequence of spin rotational in-

variance. The noise cannot change a. for k = 0 at any

temperature. We must then have
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if total spin is conserved. In this case, (11.43) is modified

to

and the dynamic exponent becomes

z = 4 (11.48)

or perhaps z = 4 - T\.

For an antiferromagnet (•with 0 now denoting the

order parameter, the staggered magnetization), the o,
K

for k = 0 is not conserved. Therefore, F ^ 0.

Clearly, equations (11.3?) were chosen for their

simplicity. The question is whether they, at least approxi-

mately, describe the critical dynamics of ferromagnets, or

other realistic systems. The answer is no. They are

oversimplified. The Gaussian approximation for H is an

oversimplification. The omission of mode-mode coupling

(the v. term in (11.8)] and slowly varying modes other
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than the order parameter is in many cases more serious,

However, (11. 37), owing to its simplicity, is a convenient

starting point for investigations.



XII. THE RENGRMALIZATION GROUP
IN DYNAMICS

SUMMARY

The extension of RG ideas to the study of dynamics

is straightforward and is outlined in this chapter. The

dynamic scaling hypothesis follows from RG arguments

when certain simplicities in the RG are assumed.

1. DEFINITION OF THE RG IN DYNAMICS

In this chapter we extend the discussion of the RG

in Chapters V and VI to dynamic models. The motivation

and basic ideas of the RG approach to dynamics are the

same as those to statics. The formulation needs to be

extended to accommodate those features of dynamics which

450
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are absent in statics,

For the purpose of this discussion, we shall con-

sider kinetic equations of the form

and ignore other modes. These are just (11.8), with o
K,

replacing q. . The phase space velocity v, must satisfy
1 K»

(11. 9) and (11. 10), namely

The probability distribution for 0 satisfies (11.6),
*C

namely
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which has the stationary solution

Recall that in Chapter V we defined a parameter

space on which the RG operates. Each point \JL in the

-1C
parameter space specifies a probability distribution e

Here we can easily generalize the concept of parameter

space. We simply include in |JL all the parameters speci-

fying v, and F, in addition to those specifying K.
*C K.

The EG transformation

has two steps, (i) a Kadanoff transformation and (ii) a

change of scale as in the static case defined in Sec. V. 2,

except that the first step here must be carried out very

differently, as follows.

Step (i). Eliminate the mode

from the kinetic equations. This means solving those
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equations of (12. 1) for a , substituting t
remaining equations for 0, , k < A/s, and then averaging

tc

over C . a procedure comparable to our el

one of the harmonic oscillators in the previous chapter.

This step is the dynamic generalization of the static

Kadanoff transformation which simply is
-K

in e ,

Step (ii). In the remaining equations for a (t),
K

k < A/s, we make the replacement

and L by sL/. This is the same as Step (ii) in the static

RG except for the additional feature t -* ts , with the new

exrponent z, which plays a role similar to that of r] . We

shall need to adjust the values of T) and z in order that

R will have a fixed point.s r

The new equations of motion are then written in the

form of (12. 1) with new parameters, which are identified

as entries in p' = JR (J.s

Step (ii) is very easy to carry out, but Step (i) is

more involved and will cause us difficulties similar to
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those we encountered in the static case. That is, after

application, of Steps (i) and (ii), the new kinetic equation

will in general assume a more complicated form than

(12, 1). For example, F/ may become dependent on cr. ,
K. 1C

2 2
and 8 o,/8t terms may be needed. In other words, the

itC

form of the kinetic equation (12. 1) is not sufficiently gen-

eral for a precise formulation of the EG. Nevertheless,

(12. 1) will be sufficient for the calculations which we shall

discuss under certain approximations.

2. TRANSFORMATION OF CORRELATION FUNCTIONS
AND RESPONSE FUNCTIONS

Let us define the correlation function C(k, IB) for

a. in the same manner as (11. 32);&

or equivalently
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C(k, w) is proportional to the cross section of inelastic

neutron scattering of momentum transfer k and energy

transfer m . The argument leading to this conclusion is

similar to that leading to (1.5), where the spin configura-

tion was assumed to be fixed during the scattering process,

i. e., the scattering was assumed to be instantaneous.

When time variation of 0. is taken into consideration,
K.

the average scattering rate is

instead of (1. 5). Here k = p - p., u> = E - E. . C(k, ID) is

often called the "dynamic structural factor. "

The linear response function G(k, m) is defined by

changing K to

as was done in (11. 27). This changes the first equation of

(12. l ) to



for small h .

G(k, i») and C(k, tu) defined by (12.9) are simply

related by

456 RENORMAJLIZATION GROUP IN DYNAMICS

Note that v' is generally not the same as v . Now the
1C Kl

response function G(k, u>) is defined by

Equation (12. 16} says that the static correlation function

G(k) studied in previous chapters, which is the
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instantaneous correlation function, is the same as the zero

frequency response function G(k,Q). It is not easy to prove

that (12. 14), the fluctuation dissipation theorem, follows

from (12. 1) and (12. 12). A proof by perturbation theory

for some models will be given in Sec. XIV, 3.

As far as those modes which are not eliminated in

carrying out R are concerned, R is simply a change of
s §

name of the modes and no physical content of the kinetic

equations is altered. Since o". (t) is replaced by&
l-T]/2 -Z

s 0 i,(ts ) in Step (ii), we must havesic

where the subscripts ja, p/ denote that the quantities are

computed with kinetic equations specified, respectively,

by n and n' = R Ji . Equation (12. 17) is simply a general-

ization of (5. 16). In an obvious notation, the Fourier

transform of (12. 17) reads
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In view of (12. 14) or (12. 15), we have

Equations (12. 18) and (12. 19) are all that the RG can tell

us about the correlation and response functions. As we

have emphasized before, the RG is a set of transformations.

It does not solve the model for us and cannot tell us what

the explicit form of G or C is.

3. FIXED POINTS, CRITICAL BEHAVIOR, AND
DYNAMIC SCALING

The application of the RG to critical dynamics is

similar to its application to statics. The discussion of

Chapter VI is easily extended to dynamics.

The fixed point ^* is invariant under R . That is,

The constants r| and z in Step (ii) [see (12,6)] are ad-

justed so that (12. 20) has a solution, i. e., one in general

cannot find a fixed point unless r\ and z assume certain
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values.

Again, just as in (6. 2), the critical surface of the

*
fixed point (J, is defined as the subapace of the parameter

space on which any point n has the property

The linearized transformation R and its general ps

ties are formally derived and expressed by the same equa-

tions as (6. 3) - (6. 11). The fundamental hypothesis linking

the RG to critical phenomena is still expressed by (6. 12).

The whole formal discussion from (6. 12) through (6. 23) is

applicable to dynamics with some straightforward modifica-

tion of results. We shall not repeat the discussion and the

equations (the reader should review Chapter VI if neces-

sary), but only note the modified results. Equation (6.18)

now becomes

for large s. Formally, the only new ingredients are the
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new argument oo and the new exponent z , It must be

m

noted, however, that |4 and e in {
defined in a larger parameter space than that in statics

and thus do not mean the same quantities as the symbols

*
fa and e in (6. 18), The exponent y might not be the

I £

same as that in (6. 18). Of course, (12. 22) must say the

same thing as (6. 18) if we set tw = 0, in view of (12. 16).

All parameters, except those specifying 1C, must drop out

when we set m -0. This provides a nontrivial check in

practical calculations. Here we assume that the exponent

1/v, assumed to be the only positive exponent, is the

same as that given by statics. Also |s

before. Setting s = § in (12, 22), we get the generaliza-

tion of (6. 19):

can be ignored, then
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2-"* tl 2
i. e., G is § times a Junction of §k and § y u . This

is a statement of the dynamic scaling hypothesis, which is

a direct generalization of the scaling hypothesis in statics.

At a fixed value of §k, the function g, as a function of w,

has a characteristic frequency scale 5 . Of c

cannot say more unless more information is provided.

For example, suppose that we somehow knew that

G(k, it), H(T)) as a function of m is a single peak at m = 0,

Then the dynamic scaling hypothesis given above says that

the width of the peak is a function of |k times §

Equation (12. 24) impEes a characteristic time

•where f(x) is some function independent of temperature,

At T=T , we set s=k" in (12. 2c

for very small k ,

-Y2
If we can ignore O(k ), we obtain
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This is the generalization of (6. 20} and (6. 21). Thus, at

T= T , Eq. (12. 27) says that the characteristic time is

When additional information concerning the response func-

tion or the correlation function is supplied, for example,

via hydrodynamic considerations, the dynamic scaling

hypothesis (12. 24) and also (12. 27) enable one to obtain a

great deal more information, A very nice discussion of

dynamic scaling and its applications has been given by

Halperin and Hohenberg (1969).

The ideas and conclusions discussed above are

indeed plausible and straightforward extensions of the static

RG. Their discussion, however, has been formal and with-

out substantiation. So far there has been no serious numer-

ical attempt to apply the dynamic RG, but have limited

explicit realization of these ideas and conclusions to a few

simple models where perturbation methods are applicable.
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In the next chapter we shall discuss some such simple

dynamic models and the results of applying the JRG to them,

We shall see that even though there is no new concept put

into the dynamic EG, there is a great deal of new structure

which was absent in the static RG.
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SUMMARY

In this chapter we apply RG ideas to the study of a

few selected simple models, including time-dependent

Ginzburg-Landau models (TDGL models), a model with

slow heat conduction, and a, model of the Heisenberg ferro-

magnet. The physical basis of these models will be ex-

plained at length. The application of the RG and its results

will be discussed, but extended calculations leading to

some of the results are not included in this chapter. They

will be included in the next chapter where technical infor-

mation \rill be systematically presented.

464
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1. THE TIME-DEPENDENT GINZBURG-LANDAU
MODELS (TDGL)

A model described by (12, 1) with v. =0, i, e. , with-
it

out mode-mode coupling, is often referred to as a "time-

dependent Ginzburg-Landau model" (or a TDGL model),

when K takes the Ginzburg-Landau form. Let us write

out the kinetic equations explicitly:

where we have generalized (12. 1) slightly to include multi-

component spins (i, j = 1,2, .. ., n). As was mentioned in

Chapter XI, if the total spin is conserved, we h,
K.

Otherwise F. can be taken as a constant. Let us distin-
k

guish these two cases by calling
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where F , y are constants.

Let us restrict our attention to model {a) for the

moment. This model can be viewed as describing a set of

spins, each of which is in contact with a large thermal

reservoir. This view can be understood more easily if we

write (13. 1) in terms of block spin variables or.(x, t)

Here 6 ( x - x ' ) has a spatial resolution of b~ A , the

block size and 6TC/60. is b 8TC/8O. in
1 IX

discrete block spin variable a. , Thus each block has anr ix

independent noise source. The dynamics is generated by

these noise sources, or reservoirs. The condition of the

reservoirs does not depend on the spin configuration. This

means that heat conduction through unspecified processes
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must be sufficiently fast. Otherwise local energy build-up

or depletion may invalidate the conclusions of (13. 1), as we

shall discuss in detail in the next section. We now turn to

the application of the EG.

This model needs only one more parameter than

those specifying 1C, namely F. Since (13. 1) is consistent

with statics, the only additional formula we need for

U ' = JR u, is the formula for the transformation of F . The
s

rest of the JRG is furnished by statics.

We define

where p, is the set of parameters specifying 1C, namely

ja = (r ,u) for the Ginzburg-Landau model.

For d > 4, we know that the static fixed point is at

^*= 0. For n = (F, 0), the EG transformation (a' = R u
§

is trivial to work out since Step (i), the eliminati

with A/s < q < A, is just the dropping of equations for

— Z
o . Step (ii) is the replacement of. 0. (t) by so (ts }

C| i£ BK,

in the remaining equations:
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We have set TJ = 0, Now we want to write the transformed

equation (13. 5) in the old form. Let us define

Then (13,5) becomes

Clearly, the transformation formula for T is

H we want to have a fixed point, we must have
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to keep T' = T . As long as z =2 , M-* - (T , 0) is a fixed

point regardless of the value of T , In fact, F can be

changed by simply redefining the unit of time. The choice

of a particular z is simply to keep T constant. This is

similar to choosing the right r\ to keep the coefficient of

2
(70") constant in the static case,

The fixed point ju* = (T, 0) will be called the trivial

fixed point. It is a stable fixed point for d > 4 for this

model, but not necessarily so when additional terras are

kept in the kinetic equations.

_*
For d < 4, the trivial fixed point |4 = 0 for the

static EG is no longer stable. This necessarily implies

that n* = (r, 0) [or (y , 0)] is no longer stable for the

dynamic RG.

For d = 4 - e with small e , one can use a per-

turbation expansion in e to determine the RG, fixed points,

and exponents. The determination of nontrivial fixed

points requires some tedious calculations, which will be

discussed in detail in the next chapter. Here we shall

merely summarize the results.

To O( e}, we simply find the fixed point
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_*
where |jt is the nontrivial fixed point for the static RG

discussed in Chapter VII.

In the limit of n -*• » , and 2 < <i < 4 the RG can

also be worked out. Again one obtains (13. 10) with ft""

being the fixed point for the static RG in this limit. Of

course, one needs to consider more general forms of 1C

than the Ginzburg-Landau form in this case. To O(l/n)

one finds z = 2 + CTJ with

which is -T for d=3 and 0 for d
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{13. 11) for d -» 4 from below.

For model (fa), i. e,, the case of conserved total

spin with F. = yk , the above analytK

the same way except for minor modifications. One defines

_ *

M. = (Y i U). One easily finds a trivial fixed point p = ( y. 0)

with

instead of z =2, This is easily seen by replacing T by

2
yk in (13. 5) and then repeating (13. 6). For d > 4 , the

trivial fixed point is stable, while for d < 4 it is unstable.

For d < 4, the nontrivial fixed point again has the

form (13. 10) except that

This is a result mentioned in Chapter XI in connection with

the van Hove theory.

The above results (13, 10) - (13. 13) [Halperin,

Hohenberg and Ma (1972)] give an estimate of the correc-

4
tion from the 0 term in 1C to the van Hove theory dis-

cussed in Sec. XI. 6. The next model is a simple illustra-

tion of the effects of additional modes.
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2. EFFECTS OF SLOW HEAT CONDUCTION

We proceed to devise a model to study the effect of

slow heat conduction. The physical basis for this model is

explained as follows.

Again imagine a block spin a(x) which is the net

spin density in the block located at x. The "reservoir"

in direct contact with o"(x) consists of all motions within

the block, including lattice vibrations, spin fluctuations

of wavelengths shorter than the block size, electronic

motions, etc. We have approximated the net effect of the

reservoir by a noise in the preceding models. The noise

has been assumed to be rapidly varying and has zero cor-

relation time. Now if the conduction of heat is slow,

there will be slow accumulation and depletion of energy

and thereby the effect can no longer be included as a part

of the noise of short correlation time and must be singled

out.

Let p (x, t) be the energy in the reservoir at the

block x. We write a phenomenological TC including p as

new modes:
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where g tw are positive constants. Now exp{-"K) is the

joint equilibrium probability distribution for the spin con-

figuration 0 and the energy p in local reservoirs. We

-!>2
Bave assumed a simple Gaussian distribution e for

p in every block in the absence of a , The coupling terra
*5

gp0 in 1C can be viewed as a local

amount gp(x, t). Since r is roughly linear in tempera-

tare, we can view this coupling term as describing the

effect of local fluctuations in temperature.

For static properties involving only 0 , we do not

need to keep track of p, We can integrate out p from

the joint probability distribution exp(-1 } to obtain

This means integrating over p for every block. The inte-

grals are independent and Gaussian. We recover the

Ginz bu r g - Landau 1C
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Now we can write down the kinetic equations for the

Fourier components of a and p following the general

form of (11. 8):

All Fourier components are restricted to k < A.. Equa-

tions (13, 14) and (13. 17) define a model, which is just the

TDGL model with one more set of modes, p, , added. In
k

coordinate representation, (13. l?b) reads
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This equation is somewhat more complicated than the usual

diffusion equation for heat conduction, but its physical

meaning is quite transparent. It says that the rate of

change of the reservoir energy p in a block is due to the

influx of energy from neighboring blocks and a random

source within the block. The influx depends on the total

energy, i. e,, the reservoir energy p plus go /2w,

interpreted as the energy of the block spin 0 , in the

neighboring blocks. This point can be made clearer by

integrating (13. 18a) over a finite region and applying

Gauss's theorem:

Here j is the flux of energy by diffusion and Dw is the

diffusion coefficient. The integral / dS is taken over the

surface enclosing the region. Note that the influx of

energy j does not go directly into the energy of the block
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spin §0 /w, but only into the reservoir energy p , which.

in turn affects O . Of course, 0 is directly affected by

neighboring spins via {13. 17a).

Equation (13. 1?) defines the simplest extension of

the previous models to include the effect of heat conduction.

There is still no organized motion in this model since no

mode-mode coupling term has been included. Compared to

the TDGJL models discussed earlier, this model simply

has more complicated noises and dissipation.

For the modes p , we define the correlation func-

tion K(k, m) in the same manner as (IE.7) - (12.9):

The response function F(kt (0) is defined in the same man-

ner as (12. 11)- (12. 13). We add a small term - ̂  p, p
k * ~fc

to K, compute (pk(u>)} , and then define F(k, tu) by

K(k, UB) and F(k, us) are related by
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We now turn to the RG study of {13. 17). The pres-

ence of new modes p, requires some minor extensions
JBw

of the definition of the RG given in Sec, XII. 1. In Step (i),

we need to eliminate the modes p , A/s < q < A as well

as a . In Step (ii), we need in addition the replacement

where y is still another exponent like f\ to be adjusted

to achieve a fixed point for the RG. This adjustment, how-

ever, will not be sufficient to achieve a fixed point. A

further adjustment of p by including in it an additive term

will be necessary. This additive term is simply the energy

of the eliminated modes. Note that when we eliminate a

mode, we push it into the reservoir. Since the new P is

the energy in the new reservoir, it must include the con-

tribution of the eliminated modes to assure an unchanged

physical meaning.

These additional features brought in by p make the

structure of the RG much more complicated. There will be



a variety of fixed points as we shall see shortly.

The RG for this model has been worked out only for

d - 4 - e to O(e). [See Halperin, Hohenberg and Ma

(1974). ] Let us go through some of the calculations.

There are six parameters in the model. Each point

in the parameter space is a set of six parameters:

The transformation JR takes y, to

Following the steps (i) and (ii), we obtain
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In other words, the new p now includes g r— ( 4 ) ,

which is the contribution to the energy from the eliminated

modes to first order in g, In the above, D and F are
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Equations (a), (c), (e), and (f) are obtained from the kinetic

equation for o , and (b) and (d) from that for p , The
lit &

dynamics is contained only in (a) and (b). The rest can be

obtained directly from the static RG. The additional adjust-

ment made for p as mentioned earlier is
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assumed to be of O(l), and g , r , u are assumed to be

of 0{e).

Equation (13,25) can be put into a simpler form.

Let us introduce the notation

The meaning of u is the same as that in statics, as ex-

plained by (13. 16), We obtain from (13.25)

The equations for u' and r ' became those given by the

static RG [see (7.59), (7.69)], as expected. To search
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for fixed points, let us first set (r , u) equal to its stable

fixed point value

as given by statics [see (7,71)], and then determine the

fixed point values of the other parameters.

For a fixed point with X ^ 0, we must have, in

view of (13.28d),

which makes sense only if n< 4 because X ^ g must be

positive as defined by (13. 14) and (13.27), Given (13, 30),

we obtain the exponent y from (13.28c) by setting w = w':
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This vahie happens to be that of the specific heat exponent

a divided by v . We shall elaborate upon this point later.

Now suppose that f is finite and nonzero. Then (13. E8a)

tells us that

So we have found a fixed point for n < 2 as given by

(13. 30}- (13. 33). This fixed point is stable, as we easily

obtain the linearized equations

which makes sense only for n < 2. Since F or Dw can

be used as a unit of inverse time, a finite D requires that
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where 6f 5 f-f*, SX s X - X* ; y f and y are both

negative.

There is another fixed point, namely at f * = 0,

which means D is much larger than F near the fixed

point. This is the situation of very large heat conduction

5**

described by the previous models. Since D*" = °° , where

F remains finite, we need to go back to (13. 25a) to find

that z=2 . This fixed point is unstable, since, from

yf
(13. 28a) we get 6f ' = 6f s with

There is of course the fixed point at f * = <*> . This

is again unstable for n < 2 , since

as obtained from (13. 28a) for 1/f* = 0.

For 4 > n > 2, this fixed point is evidently stable

according to (13. 3?), and there is no fixed point for finite

f* [Eq. (13. 32) breaks down if n > 2]. The f * = 0 fixed

point is still unstable since (13. 36) holds for n < 4. The
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limit f-*• °» describes the situation where the heat conduc-

tion is extremely slow compared to the spin fluctuation.

The exponent z for f = °° is directly obtained from

{13. 25a) by setting D=0:

Note that if D -*• 0, then p, with large k will also have
«c

long relaxation times whereas (13.25) assumes short

relaxation times for large k modes. Thus the D = 0

fixed point has little meaning.

^Finally, there is the fixed point with \ = 0, y = 0,

z = 2. This fixed point is stable for n> 4 because (13.28d)

gives

*
for \ = 0. This means that the coupling between the spins

and the heat conduction is weakened by the transformation

JR and will not affect the critical behavior predicted bys
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the time-dependent Ginzburg- Landau model discussed

before,

The above results on fixed points are summarized

in Table 13. 1.

So far -we have set F. - T. For the case F = yk ,
K, l£

i. e,, the case •where total spin is conserved, the results

are much simpler. Equation (13.25) remains the same ex-

cept that (13. 25a) is replaced by

Thus for a fixed point we must have z = 4. This means

D = » , i. e., infinite heat conduction. Therefore the pre-

vious model defined by {13. 1), (13.2b) is adequate.

We conclude this section with a few remarks on the

conspicuous role of the specific heat exponent a, as

shown in Table 13. 1.

As we have noted earlier, when we apply R , the
s

transformed 0 will include energy fluctuations of the elim-

inated spin modes. If tt > 0, the energy fluctuation of spin

modes is very large and will constitute the major part of

the transformed p for large s. It is thus not surprising
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Table 13. 1

Fixed points and exponents to O(e) for the model
with slow heat conduction, F^ = P

Fixed
Point

«** *?rz

*

yx

yf

y

z

Defined
for

Sable
only for

(i) (")

n< 2 n< 4
only only

n < 2 2 < n < 4

(iii)

0

2

n< 4
only

Unstable

(iv)

0

0

0

0

2

Any
n

n> 4

f
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that the exponent for p , i. e., y, is just CX/Z v if a > 0

[fixed points (i), (ii), (iii)]. If a < 0, the spin energy

fluctuation is not large and p will essentially be the orig-

inal reservoir energy, and the exponent for p is zero

[fixed point (iv}]. The fact that y = G for (iv) reflects

the arbitrariness in choosing the unit of F.

The above results show that, if the spin energy

fluctuation is large, i, e., a > 0, slow heat conduction will

modify the dynamics significantly, as expected. For the

case F = Y k , the spin relaxation is so slow that even
K

when a > 0, the dynamics is not modified significantly.

The fact that n = 4 is the borderline for the sign

of 0, applies only when d is very close to 4. From other

calculations of a, we know that for d = 3 the borderline

should be at an n less than 2 because a for n = 2 is

already negative for d = 3. This suggests that the fixed

point (il), whose meaning is very dubious, may not

exist for e larger than some value less than 1. Just

how large this value is remains unanswered. Of course,

all results in Table 13. 1 are correct to O(e) and may not

hold for d=3 . For more discussion, see Haiperin,
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Hohenberg, and Ma (1974).

3. THE ISOTEOPIC FERROMAGNET

The above models did not include any regular or

organized motion. There were no mode-mode coupling

terms in the kinetic equations. The dynamics they described

was strictly dissipative, generated by random noise. Now

we examine how a model with mode-mode coupling trans-

forms under the EG and how its critical behavior is affected

by the presence of the mode-mode coupling terms. Con-

sider a simple model of an isotropic ferromagnet con-

structed as follows,

The organized motion in a ferromagnet is the pre-

cession of spins. Let o.(x, t) denote the spin configuration

and B,(x, t) be the local magnetic field. Here d and B

are taken to be three-dimensional vectors, i. e., i = 1,2, 3,

n = 3. The equation describing the precession is well known:

where X is a constant (obviously unrelated to the X in
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the previous model), and the cross means the usual cross

product of three-dimensional vectors.

Of course, in addition to precession, there are

still dissipation and noise. Now we take over the TDGL

2
model (13. 1} with F, = yk and add a mode-mode coupling

IV

term given by (13.41):

where v, is the Fourier component of \a x B:

We need an expression for B, which is the sum of the ex-

ternal field h and the field provided by the neighboring

spins. It is effectively given by

2
Here 7 o(x) is proportional to the mean of spins in the

489
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2 X d neighboring blocks minus the block spin itself at x.

The part of the local field contributed by the block spin

itself is proportional to 0(x) and does not affect a x B

since a X a - 0, More precisely, B is given by

which is (13.44), apart from terms proportional to a .

Finally, we substitute (13, 44) in (13. 43) to obtain

Equations (13.42) and (13.46) define our model completely.

We use F. = yk in (13.42) since the total spin is a con-

served quantity. The effect of slow heat conduction was

2
shown to be unimportant for I*. = yk in the preceding

1C

models, so we do not include it here.

The only new parameter is X . We write

The fixed point found in the beginning of this chapter is for

X* = 0:



with k ' = sk, and we must write L = L's. Equation (13.50)

follows from (13.46). Sibstitating (13.49) and (13.50) in

(13.42) we get
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$ *
valid to O( e) for d = 4 - e , with (r , u ) denoting the

stable static fixed point, and also valid for d > 4 (with

To check whether u is stable, we need to find theo

linearized transformation law of X under the RG. This

is easily found since Step (i), the elimination of modes,

plays no part in the calculation. Step (ii) makes the re-

placement

ro* = u* = 0).
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since z = 4. Clearly 3-d/2 > 0 and |4 is unstable for
d< 6 and stable for d> 6. The borderline is at d = 6.

The e = 4 - d expansion around d= 4 therefore will not

help in searching for a stable fixed point. As a first step

in looking for and studying the stable fixed point for d < 6,

we shall consider d = 6 - e with small positive e .

The stable static fixed point for d > 4 is the trivial

fixed point. For the purpose of searching for dynamic

fixed points, it is sufficient to work out the RG for

\i' = R (4 with r = u = 0, Going through Steps (i) and (ii),s o

we obtain the formulas via calculations to O(e) :

Combining the two equations in (13. 52), we obtain

where
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*
Clearly, there is the unstable trivial fixed point \i ,

mentioned earlier, with X = 0, z = 4. There are also

two nontrivial fixed points given by

These two fixed points differ only by the sign of X . The

sign of X can be reversed by simply reversing the signs

of a and h and has no special significance. We can

*
simply ignore the fixed point with negative X

The nontrivial fixed point is stable, as one easily

finds

by linearizing (13. 55).

What we have just shown is that a mode-mode

coupling term can make a great difference in the fixed
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point and the dynamic exponent z .

The above three models illustrate the corrections to

the simple van Hove theory discussed near the end of

Chapter XL These corrections are due to the non-

Gaussian nature of 1C, the additional slow modes, and the

organized motion, i. e. , the mode-mode coupling. The

RG approach allows us to treat these corrections as small

when d is restricted to 4 - e or 6 - e .

4. UNIVERSALITY IN CRITICAL DYNAMICS

From our study of the above models, it is evident

that universality of critical behaviors is far more restricted

in dynamics than it is in statics. That is to say, among the

systems sharing the same static critical behaviors, there

can be widely different dynamic critical behaviors. All the

models studied above share the same fixed point and expo-

nents under the static RG for fixed n and d. But when

dynamics is taken into account, many fixed points with

different exponents appear. The basic question is to what

extent universality remains. So far it looks as if whenever
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we add something to the model, we get a new type of critical

behavior. One might answer that there is not any universal-

ity. This is of course an overpessimistic answer. In the

above discussions, we have devoted a great deal of atten-

tion to concrete physical pictures and details for each

model with the result that it is easy to lose sight of the

overall features. The most significant feature of these

model studies is the strong evidence they present that the

RG ideas given in Chapter XII are correct for dynamics

as well as for statics. That is to say, universality of

dynamic critical behaviors is determined by the properties

of fixed points. Universality is observed for all systems

sharing the same critical surface of a fixed point. What

we need is to classify all fixed points of interest. This

task is far from being accomplished. Let us summarize

the main gross features by which we have learned so far

to distinguish fixed points of the RG:

(a) Static fixed points

In our analysis above it is evident that a prerequisite

for a fixed point for the fall RG is that the static part of the

RG have a fixed point. Thus, one has to classify all static
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fixed points first.

(b) Conservation laws

Conservation laws affect the transformation prop-

erties under the RG in a crucial manner. They determine

whether a local disturbance can be randomized or relaxed

locally or must spread out to an infinite region in order to

disappear. Whenever large sizes enter into the picture,

transformation properties under the RG are affected

strongly. For the same static fixed point, different con-

servation laws can lead to different full fixed points.

(c) Mode-made coupling

This is the regular or nonrandom aspect of dynamics

and is probably very difficult to classify because of its

variety. The random part of dynamics, i. e., dissipation

and noise, is basically statistical in nature, limited only by

conservation laws, and expected to depend only on the phase

space considerations which determine static behaviors.

The mode-mode coupling, however, does depend on details

of the lynamics. The precession of spins in a ferromagnet

is a vei'y special feature, not shared by antiferromagnets,

for example. The exponent z = 1 + d/2 for the
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ferromagnetic model is a, consequence of the form of the

precession term in the kinetic equation. Cur task is thus

to classify various features of mode-mode coupling terms

which are relevant in determining the transformation

properties under the RG.



XIV. PERTURBATION EXPANSION IN DYNAMICS

SUMMARY

We develop perturbation expansions for solving

kinetic equations. Rules of calculation using graphs are

systematically presented. The development runs parallel

to that given in Chapter IX for statics. The main purpose

of this chapter is to provide basic technical information to

those readers who want to learn the hardware of perturba-

tion calculations.

1. ITERATION SOLUTION OF KINETIC EQUATIONS

We begin with the time-dependent Ginzburg-Lrandau

model given by (13. 1). For the case u = 0, (13. la) is

498
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simply

Define G as
o

Then the solution of (14. 1) is

The correlation function for n = 0 is C (k, uu) defined by

which follows from (13. Ib), we obtain

Using (14. 3) and the fact that
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The subscript or superscript o will always denote the

solutions of the linear equation (14. 1), the "unperturbed

equation. "

For u ^ 0, (13, la) can be written in Fourier trans-

formed form as

We have turned on an external magnetic field h, which

gives rise to the last term in (14.7). We can now iterate

(14.7) to obtain. 0., (w) in powers of u and h. This is the
3.K-

perturbation expansion. Note that since £ ., is assumed

o
to be a Gaussian noise, 0 is, too, in view of (14. 3).

i&

The average of a product of CJ 's equals the sum of pro-

ducts of all pairwise averages, just as in the static case.

Each pairwise average is given by (14. 4) and (14. 6).



2. REPRESENTATION OF TERMS BY GRAPHS,
RULES OF CALCULATION

As in the static case, the dynamic perturbation

expansion can be represented by graphs. Here graphs

represent terms generated by iterating (14. 7), and then

o
averaging over a

Equation (14. 7) is represented by Fig. 14, la. The

thick short lines represent a , the thin short lines repre-

sent a . The longer thin lines represent G , and h is

represented by a cross. The dashed line represents -u.

The arrows keep track of the direction of iteration. Fig-

ure 14. Ib shows the solution of (14. 7) to first order in h

and u , obtained by replacing o , the thick short lines by

cj , the thin short lines and G h, a thin line ending with a

cross. Figure 14. Ic gives second-order terms in u and

first-order in h for 0 .

It is easy to see that further iterations generate

graphs like Fig. 14.2. Such graphs look like trees and

will be called tree graphs. More complicated tree graphs

are obtained from simpler ones by "growing more branches."

Each tree graph begins with a G . All thin lines are G *s0 * ° o o
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Figure 14. 1. (a) Representation of (14.7) by graphs.
(b) Graphs for Gh of O(uh).
(c) Graphs for Gh of O(u2h).



Figure 14.2. A tree graph for Gh.

except those short ones forming the ends of branches,

, . , o.
which are a s.

When we want to take the average of the solution,

we take pairwise averages of o 's. For each pairwise

average, we have a factor C , as we mentioned earlier.

We can easily represent such averages graphically. We

simply join the ends of branches in pairs in ail possible

ways. The lines formed by joining a pair of a 's will be

represented by a line with a small circle in the middle,

Figure 14, 3 shows the averages of terms shown in

Fig. 14.I .

Clearly, the graphs look exactly the same as those

in statics except that some of the lines now have circles

on them. Intuitively, a plain line, which represents a G ,
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Figure 14. 3. Graphs for Gh.
(a) First order in u.
(b), (c) Second order IB u.



describes the time evolution, ft is the "propagator, " A

circled, line represents the average of a pair of a 's. It

gives the zeroth-order "power spectrum" of spin fluctua-

tions, and describes the statistical average.

The response function G(k, OB) is defined by (12. 13).

If we sum all graphs with one cross, we get G(k, ou) h. (cc).

Let us summarize with the following rules for cal-

culating perturbation terms by graphs. We restrict our

statements to graphs for G(k, t») h, (ou ) for simplicity.

Rule (i): Draw a tree graph with one cross. Join all end

points (the beginning of the tree and the end with a cross

excepted) in pairs to form circled lines. Note that there

is in general more than one way to pair up ends. Each

way gives a separate term.

Rule (ii): Label each solid line with a wave vector and a

frequency. The wave vectors and frequencies must follow

conservation laws, i. e. , the incoming one must equal the

sum of the outgoing three at each vertex.

Rule (iii)' Write G (q, v) for each solid line without

circle, C (q, v) for each solid line with a circle, -u for
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each dashed line, and h, ( o u ) for the cross.

Rule (iy): Integrate over all frequencies and wave vectors

which are not fixed by the conservation laws in Rule (ii),

-d-1
A factor (Zr r ) So&s with each wave vector-frequency

integral. For each closed loop of solid lines, write a

factor n (which comes from the sum over spin components

just as in the static case).

One may take advantage of the knowledge gained

from static graph calculations and simplify Rule (i) and the

counting of graphs. Rule (i) may be replaced by

Rule ( i ' ) : Draw a graph for G in statics. Keep the same

factors of n, n, and other counting factors. Put small

circles on the solid lines in all possible ways under the

following constraint: When all circled lines are cut, the

graph must become a tree graph.

The above rules are for the TDGL. model. General-

izations to other models are straightforward and will be

made as we proceed.

As a simple illustration of the rules, consider the

graph Fig, 14. 3a. It gives a contribution
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The v integral is easily done using (14.6) and the explicit

expression (14.2). We get

which is independent of k and cu and is the same as the

first-order self energy in statics.

As in the static case, the response Junction G(k, ID)

can be expressed as

where the self energy £(k, u>) is the sum of graphs for

G(k, u>) with isolated single G (k, u)) lines excluded.

As a second illustration, consider the graphs in

2
Fig. 14. 3b. We get an O(u ) contribution to S(k, OB):

507
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There are very important differences between the

static and the dynamic graphs, besides the frequency vari-

ables. As we mentioned earlier, the two kinds of lines,

i. e., the circled and the plain, have different physical

significance. The plain lines, the G 's, describe time

evolution while the circled lines, the C 's , describe

statistical averaging. In statics, there is only statistical

averaging. In static graphs, one can consider a part of a

graph separately, such as the vertex part or the self

energy. One can easily join parts together to form new

graphs. In dynamics, the fact that there are two kinds of

lines and the condition that a graph must be a tree graph

upon cutting all circled lines make the graph analysis much

more complicated. These complications are all results of

the necessity of keeping track of both time evolution and

statistical averaging together. In quantum perturbation
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theory at a finite temperature, they are mixed together by

using imaginary time variables. This is the Matsubara

method, or the temperature Green's function method, where

graphs can be conveniently handled like static graphs. One

pays the price of having to do complicated analytic continua-

tions in going from imaginary frequencies to real frequen-

cies.

One can show that for k, m -* 0 the perturbation

expansion will not converge near the critical point for

d < 4 by the power-counting procedure used in the static

graph expansion discussed in Chapter IX. There appears

to be some complication here from the frequency integrals

and the fact that each circled line gives a factor C (q, v),

which as -2 powers of q and -1 power of v. [G (q, v)

has -2 powers of q as G (q) in statics. ] But the number

of frequency integrals is the same as the number of circled

lines because each circled line came from joining two ends

of a tree, thereby forming a loop for a wave vector-

frequency integral. Thus the -I power of v cancels the

+ 1 power of v of the v-integral. We can thus count

powers of wave vectors as we did in static graphs and
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forget about powers of v. Consequently, as in statics, we

find that for d < 4, the perturbation series diverges.

3. THE FLUCTUATION-DISSIPATION THEOREM

This theorem relates the correlation function to the

imaginary part of the response function:

It can be trivially satisfied to zeroth order, as (14.6) shows,

and easily proven in a microscopic theory. Also, in a

formal way, it can be shown to follow from our general

kinetic equations. Here let us illustrate how this theorem

may be satisfied by studying graphs. The reader can gain

some insight into the structure of graphs through this

illustration,

Any graph for G{k, m) has one continuous chain of

G 's and u's running from the beginning to the end to be

hooked to h, as the previous examples showed. A general

graph for G(k, tu) looks like Fig. 14. 4a. All the ends of

the branches growing out of the main chain will pair up to
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Figure 14. 4. (a) A general graph for G (ignore the factor
of h). Other lines are not shown
explicitly.

(b) A term of (14. 16) for Im G(k, a>).
(c) A term of (14. 17) for C(k, ui).

form circle lines. Before we perform any integral, the

graph gives

where we have used the simplified notation
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and all other factors are included in A. Note that

k = k = k, ID = uu = w . Now we tarn the graph around
and reverse the arrows on the main chain. We, of course,

get another graph for G(k, tu), which may or may not be

the same as the original graph. In the new graph, the pro-

duct of G 's on the main chain remains the same as that
o

in the original graph, since only the order of the G 's is

reversed. But the frequency variables in the side branches

are reversed to satisfy conservation laws at each vertex,

(Wave vectors are also reversed but it makes no differ-

ence, since they all appear in the form of squares. ) Re-

versing frequencies is the same as taking the complex

conjugate. The sum of the original graph and the new one

is therefore

The conclusion we want from (14.15) is that the imaginary

part of A will not contribute. Therefore, if we take the

imaginary part of a graph for G, we can regard A as
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real. In effect, the imaginary part of (14. 13) is

Figure 14. 4b shows a given term in this series.

Now we note that the contribution to C(k, IB), which

is just (0, (u i ) a ( - t o ' ) ) = (a ( < f l ) c (UB ') *) apart from aK. "™k 1̂  K

6 function 6( t t ) - U ) ' ) , can be represented by graphs gener-

ally of the form shown in Fig. 14. 4c. That is, we multiply

*
two tree graphs, one for 0 , ( ( « ) and another for a, ( U B ) ,

and then average. In Fig. 14. 4c, only one circle line

resulting from averaging is shown explicitly. The others

are understood. The contribution from the chain explicitly
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shown to C(k, 00} is

which is just a terra in the sum (14, 16). Now for every

graph for Im G(k, ID), such as the one given in Fig. 14. 4b,

there is a graph for C(k, no) given in Fig. 14. 4c. The side

branches have identical structure. On the right side of

C in Fig. 14.4c, all factors including those from the

branches have a star, i. e. , are complex conjugated. Now

we remove the stars from the factors on the right side

branches and reverse all frequency variables in the branches

on this side; we also reverse the arrows on the main chain

to the right of C , We then get a graph identical to
Fig. 14. 4b apart from the circle on the Ith line. We get

the contribution

Since C = (2/ID ) 1m G , the Ith term in (14. 16) for
Im G(k, <»} is <i>. /2 times the corresponding term for

C(k, «j) in (14. 18). We have w = ce if the branches to the

left of the Ith line are not joined to those to the right. We
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represent this sifruatioa by Fig. 14. 5a. This means that

Im G(k, ou) = ( tu /2 ) C(fc, OB) for such graphs. Of course,

there are also graphs in which they are joined, as repre-

sented by Fig, 14. 5b. The additional circled lines give the

factor C / C „ , .. C ,„ , In the graph for Im G(k, ou),

we need also to account for graphs in which the I line

changes places with one of the i ' , I * , . . . , i'* lines.

This makes a total factor

Figure 14. 5. A graph for C(k, as) is obtained by joining
two trees. The joint can be a single circled
line as shown in (a), or it can be several
circled lines as shown in (b).
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is the corresponding factor in C(k, IB). This conclusion

implies that Ira G(k, to) = ( tw/2) C(k, oj) for general graphs,

and the theorem is thus proved. This kind of proof can be

generalized trivially to models with more modes.

4. GRAPHS FOR HIGHER RESPONSE AND
CORRELATION FUNCTIONS

In statics we are able to classify graphs according

to the number of external lines or "legs. " The sum of

graphs of two legs gives G(k), and the sum of m-leg graphs

gives G(k... ,k ), as we have discussed in Chapter IX,



In dynamics, the classification needs to be general-

ized, because of the presence of the circled lines in addi-

tion to the plain lines. Let us define a one -1 r e e g r aph to be

that which becomes a tree graph upon cutting all circled

lines. An m-tree graph is a graph which becomes m

disconnected trees upon cutting all circled lines. Thus,

G(k, oil) is the sum of two-leg one-tree graphs, and C(k, «i)

is the sum of two-leg two-tree graphs. We can define

generalized response functions G.. .... ( f c . , U ) , . . . k , m )
ii, i 1 1 m m

1 TO

by expanding ( 0 . , ( u ) ) ) in powers of the external field
i&

h,k(»):

where k, + k_ + • • « +k = k is understood. Of course,1   m

GRAPHS FOR HIGHER RESPONSE 517
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G., (k, a>) = 6.. G(k, a)). The other G's are the nonlinear
lll "l

response functions. In terms of graphs, G.. . is the
11 - « * » 3.

1 m
sum of all m -fl -leg one-tree graphs.

We can define correlation Junctions of more than

two o's at h = 0 as

where k + * • • + k = 0 is understood. It is also under-
i A

stood that disconnected graphs are excluded, i. e., (14, 13)

is defined as a curaulant. C. , is the sura of alli r . . i x

X-leg X-tree graphs.

Clearly, we can also define mixtures of correlation

and response functions by considering the correlation func-

tions like (14. 13) in the presence of an external field h

and expanding them in powers of h as we did in (14. IE).

We then get \ + m - leg X -tree graphs.

Some examples are shown in Fig. 14. 6. Clearly,

these graphs are very much like those in the analysis of
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Figure 14. 6. (a) Four-leg one-tree.
(b) Six-leg one-tree.
(c) Four-leg two-tree.
(d) Eight-leg four-tree.

quenched random systems in Chapter X. The quenched

impurities act as sources of time-independent random

noise.

As we have shown, C(k, no) and G(k, iw) are simply

related by the fluctuation dissipation theorem C(k, ui) =

(2/u)) Im G(k, u»). The higher response functions and cor-

relation functions are also related by similar but much

more complicated theorems. While G(k, u») can be con-

tinued into the complex ou-plane and defined as an analytic
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function in the upper and lower plane and with a cut along

the real axis, higher response functions can be continued

into the space of several complex variables with, compli-

cated cut structures. Correlation functions are related to

discontinuities across various cuts. We shall not study

these analytic structures. Let us only note here that once

G.. . ( k , , u t ) , . . . k ID ) is known, then the sum of
11.... i 1 1 m m1 m

m + 1 - leg X-tree graphs for all m + 1 S; X s 1 can be

determined.

5. ADDITIONAL MODES AND MODE-MODE
COUPLING TERMS

The above discussion has been restricted to time-

dependent Ginzburg-Landau models. Extensions of graph

rules to kinetic equations with additional modes and mode-

mode coupling terms v, are quite straightforward. As an
K.

illustration, we consider the model with heat conduction

defined by (13. 14) and (13, 17), and the ferromagnet model

defined by (13. 42) and (13. 46).
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(a) Model with heat conduction

We have the additional modes p, and additional
|C

coupling constant g. Ail we need to do is to introduce

graph elements to account for p. and g in the same
j£

manner as we did for O, and u .
k

Setting u = g = 0 in (13. 14} we obtain from (13. 17)

the zerotfa-order equation for O, , which is the same as
K,

(14.1), and that for p ° :
K.

We have set w = 1 for simplicity. The zeroth-order cor-

relation function K and response function F f see
o . o l

(13.20) and (13.21) for definitions of K and F] are easily

obtained:

For nonzero u and g, we get from (13. 17a) an equation

which is the same as (14.7) for 0, ( u u ) except that u is
K,
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replace by u and the term

Let us represent F by a wavy line and K by a wavy
line with a small circle in the middle. The previous graph

rules (i), (ii), and (iv) are unchanged provided wavy lines

and straight lines are treated on equal footing. In rule (iii)

we change u to u and add the sentence "write F (q, v)

for each plain wavy line, K (q, v) for each circled wavy-

line, and -g for each vertex joining two straight lines and

a wavy line. "

As an example, Fig. 14.7 gives the O(u) and

O(g ) terms of self energy:

is added to the right-hand side. There is also an addi-

tional equation obtained from (13. 17b):
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Note that F (q, 0) = 1, as (14,21) shows. Let us write,

2
following (13, 16), u = u - g . Then (14.24) gives

Figure 14.7, Self energy graphs to O(u) and O(g ).
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where £ is given by (14. 8) anda

2
We have combined u with the -g F (q, 0), which is the

static (zero frequency) value of the wavy line, to give u

and subtracted the static value from F (q, v). This in fact

can be done in all graphs. We arrive at the new rule (iii)

that

"Every dashed line still gives a factor -u (not -u),

and every wavy line gives a factor F'(q, v) [instead of

F0(q. V ) ] . "

(b) Ferromagnet model

This model has an additional interaction term,

namely, the v. term in (13.42) as given by (13.46). The

equation for iteration is just (14. 7) with one more term:



plus the u-term in (14,7), which we omit here. The

symbol e is the three-dimensional completely anti-

symmetric tensor used here to express the cross product

in component form, and X = \ / Y •

The modification of the graph rules are

(i) Add graphs with three-line vertices. A three-

line vertex has one line in and two lines out. It gives a

factor

i and k being, respectively, the component label and the

wave vector for the incoming line, while j, k', I, k "

are those for the outgoing lines.

(ii) Owing to the additional h / in the square
Jt J£

bracket in (14.28), we need to add vertices with a cross,

ADDITIONAL MODES  525
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representing h , / , joining two lines and giving a factor
x. k

Figure 14,8 shows O(\ ) graphs for Gfk, o))h.t .
h

Let us take i = l. Then j, I must be 2. 3, or 3. 2. The

contribution of Fig. 14. 8a is

The factor 2 in front comes from the fact that jl = 23 and

jl = 32 contribute equally. The contribution of Fig. 14. 8b

is

Figure 14.8, O( X ) correction to Goh in the ferromagnet
, model.

(a) is given by (14. 31) and (b) by (14, 32).
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The power counting argument can be used to show that the

perturbation expansion does not converge for d< 6 for

k, IB -* 0 at the critical point. This is left as an exercise

for the reader.



APPENDIX

This appendix is supplementary to Chapters II and

V, where a few technical points were skipped for the sake

of continuity and simplicity.

1. AN ALTERNATIVE FORMULATION OF COARSE
GRAINING, THE CLASSICAL FIELD
CONFIGURATIONS

In Chapter II we have formulated the ideas of

coarse graining and block Hamiltonians in terms of classi-

cal spins in a ferromagnet. These ideas apply equally well

to other kinds o: variables such as staggered magnetization,

Cooper pair amplitude, and the density of a fluid. The

formalism can be easily generalized. The following dis-

cussion has been found useful by theoretically oriented

528
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readers. It will be slightly more formal than what has

gone before,

To be very general, we begin with a microscopic
A.

quantum mechanical Hamiltonian H. Suppose that we ex-

pect the order parameter to be the average of the quantum

mechanical operator

where 0(x) could be the Boson field operator in Hell, or

the density operator n{x) in a fluid, or the pair operator

vj>. (x) 4* , W in a superconductor, or the spin density

operator, etc.

Let p(x) be a smooth function which diminishes for

x larger than a length b, for example, a Gaussian

The constant A is a normalization factor such that

/ p (x) d x = 1. Let us define the smeared operator $(x)
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which is clearly 0(x) smeared over a volume of size b .

Now we want to obtain an effective Bamiltonian

H[0] for a classical field a(x) which contains all the rele-

vant information concerning $. We can define a classical

Hamiltonian H[o] by

which is the generalized form of (2. 16) with P[a , 4] play-

ing the role of the product of 6-functions and the trace

playing the role of the integrals. We demand that

/60P[0 ,$] = 1 (A. 5)

for any $ and that P[a , $] should peak at 0 = $. A

convenient choice is

where w is an arbitrary positive constant. If w is very
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large, then P[0,4] resembles the product of 6-functions

in (2, 16). However, there is no need to choose a large w.

Equation (A. 5) is satisfied by (A. 6), since we can change

the variable of integral 6 0" to 6 a' with a' = a - $ .

We have, by use of Eqs. (A. 4) and (A. 5),

Thus the partition Junction of the classical Hanailtonian

H[o] is the same as that of the quantum mechanical H.

Consequently we can get the correct thermodynamical

information from the classical H [0 ] ,

In general, one will also be interested in the aver-

age and correlation functions of $ (x),

etc.

How are these related to quantities calculated with the

classical Bamiltonian H[cr] ? The answer generally



depends on the form of P [0 , $], and can be seen easily

via the moment generating functions as follows.

Define the moment generating function in. [ \ ] for

the classical field a as

Similarly, the moment generating function for the operator

$ is defined as

Averages and correlation functions can be generated by

differentiating the generating functions with respect to \

and then setting X = 0:

APPENDIX532
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and. so on. Note that ${x), <|(x') may or may not com-

mute. The correlation functions generated by (A, 12) are

averages of the sum of products of i in all possible

orders divided by the total number of ways of ordering.

If one is only interested in the large-scale behavior, i. e.,

the case where x, x' are far apart, then the commutators

will play no role.

Now #? and Ifi. can be related via the definition

(A. 4) of H[a ]. Let us use (A. 6) for P and substitute

(A. 4) in (A. 11) to obtain

where the argument x for X , O , and $ is understood.



and so on. Thus the average of the operator 4 (x) is the

same as the average of the classical field cr{x). The cor-

relation functions of i are in general different from those

of a but are simply related.

We have done two things in the above discussion.

First, we coarse grained 0{x) to get $(x) via (A. 3).

Second, we introduced a classical field cj(x) and its effec-

tive Hamiltonian H[a] via (A. 4) - (A, 7). This classical

534

Now we replace 0 by Q ' + |» in (A. 14) to obtain

APPENDIX

which gives the relationship between ftl and 7ft . In view

of (A. 13), (A. 14), and (A. 15), it is evident that



field has the same thermodynamic behavior as the quantum

mechanical system. Furthermore, once the correlation

functions of the classical field are known, those of J are

simply obtained via Eq. (A. 16), We may regard 0(x) as

a classical approximation for $(x).

The above discussion obviously applies also when

$(x) and i(x) are classical variables instead of quantum

mechanical operators.

The replacement of 6-functions by a smooth func-

tion P [o*, $] such as the Gaussian (A. 6} smears up the

variable $ itself in contrast to smearing its spatial

dependence as in (A. 3) . It removes some unpleasant

mathematical features of 6-functions. It also produces

extra terras like the 1/w in (A. 16) which must be care-

fully kept track of. Different forms of P[ o" , $] in general

produce different extra terms.

2. SMOOTH CUTOFF

The sharp cutoff in q in (5. 19) produces very

undesirable mathematical features. We saw in Chapter VII

that long-range interactions in coordinate space were
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generated by such a sharp cutoff in q space. Such long-

range interaction is analogous to the Friedel oscillation

due to a sharp Fermi surface familiar in the physics of

metals. Here the long-range interaction is of a purely

mathematical nature and has no physical consequence, in

contrast to the Friedel oscillation. To remove it, one

needs to make the cutoff smooth. In other words, we need

to smooth the transition from the integrated to the unin-

tegrated. To accomplish this, we proceed in the same

way as in the discussion of the previous section. Let us

concentrate on the Kadanoff transformation K 3C = 5C '.
s

We introduce a new definition

where
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B is a normalization constant such that /6 0' P[a ', a] = 1,

w is a positive constant. The function p, is defined by

and, in between A/s + A and A/s - A, p, increases
Ic

smoothly from 0 to 1. The quantity p 0,, is theIc ilsi

Fourier component of

where p is the Fourier component of p (x). Equation
cC

(A. 19) says that p{x) is something like a smooth weighting

function over a region of a size s A , and (A.20} gives the

coarse grained spin weighed by this weighting function,

Thus p (x) defines the new spin blocks in a smooth way.

Instead of a 6-function, we have a Gaussian in (A. 17).

Thus 0 ' is not quite equal to p 0 , but close to it

-1/2roughly within a width w It is a nondeterministic
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relationship between a' and a . It can be viewed as a

special form of nonlinearity.

Note that to achieve a smooth cutoff it is not neces-

sary to have a finite w. We can set w -* °° and P [ a ', 0]

would be a product of 8-functions. Here we keep w flex-

ible to make the analysis more general,

The rest of the argument is almost identical to that

in (A. 9) - (A. 16). We shall give it for completeness and

continuity.

We note that / 6 0P[a ', a] = 1. Integrating both

sides of (A. 17), we obtain

Therefore the free energy of K and that of 1C ' are the

same.

The correlation functions are slightly more compli-

cated. Let us calculate the generating function
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By (A. 17), the numerator is

where we have displaced the variables, 0' to a' -f p a .
iJK ik si ilc

When we perform the 0' integral and then divide by

f. / -K'J 8 a e , we get

As far as correlation functions involving 0., , k < his - A
xtc

are concerned, p = 1. They can be obtained by differen-
K.

tiating the generating function and then setting X = 0. For

example,
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Thus the finite w introduced in (A. 1?) does produce a

difference in the average values of 2nd and in fact all high-

er powers of spin, although the first power is not affected.

Note that in (A. 26), 1/w is a constant. Thus the singulari-

ties of interest in G(k) are completely contained in

2 '
^ I °-'t, I ^ * For higher correlation fcmctions, the extra

3.IC

terms analogous to 1/w will be singular, but the leading

singularity will be contained in the same correlation func-

tions computed with 1C ' [o ' ] .

A warning is in order. If we define R by the
s

above smooth cutoff procedure (together with the replace-

d/2
ment a. -* X s 0 , ), we shall find that the relationk s sk

R R / = R , will not always hold. It will not hold when-
S S 88

ever the transition region A/s' - A < k < his' + A for

R , overlaps the region k > A - s A. Roughly speaking,
S

smoothing out the cutoff twice in R R , is in general not
8 8

the same as smoothing out the cutoff once in R , . To
H S

avoid this difficulty, we can define R by first defining a
0

generator, like 1C , or R or R usin the above
£ 1, !> Jt T 6



procedure and then generating R by repeated applicationss

of the generator, e. g.,

Then R JR , = R / b y construction.s s ss '
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(References given parenthetically are in addition to those
cited in the text. )

Abe-Hikami anomaly, 336
Anisotropy, 346-353
Antiferromagnet, dynamics (Freedman and Mazenko, 1975)

Block construction, 58, 62, 246, 253, 254, 525-530
see also Kadanoff transformation

Block Hamiltonian, 56-71
Block spin, 58, 59, 62
Bose system dynamics, multicomponent (Halperin, 1975;

Ma and Senbetu, 1974)
Brownian motion, 425-432

Cell Hamiltonian, 45, 46, 51, 53
Cell spin, 45, 50, 51
Characteristic time exponent, see dynamic exponent
Coarse graining, see block construction
Conservation laws, effect on critical dynamics, 447
Conventional theory, see van Hove theory
Correction to scaling

role of y2, 158, 159 (Wegner, 1972)
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Correlation function,, dynamic, 439-441, 456
inelastic scattering rate, 455
transformation under RG, 454-459

Correlation function, static, 18-19, 33, 51
in Gaussian approximation, 83, 87
and scale dimension, 109-110
scaling form, 104-108 (Abe, 1975; Abe and Hikami,

1974; Fisher and Aharony, 1974; Aharony, 1974;
Brezin, Amit and Zinn-Justin, 1974; Tracy and
McCoy, 1974)

transformation under RG, 251, 259
Correlation length, 104-109

in Gaussian approximation, 89-92
Critical exponents

definitions, a, 15
P . 11
6, 13
T|, 18, 84
Y, 14, 84
V, 91-92, 104-105

Gaussian approximation, 92
for d > 4, 156
and RG, 139-157
numerical calculation, Ising model, 260-266
for higher critical points (Wegner, 1975)

Critical point, 4, 8
Critical region

definition, 157
for small e , 206

Critical slowing down, 445, 445
Critical surface, 136, 160, 177, 266, 459
Crossover exponent, 184
Crossover scaling function (Hikami and Abe, 1974;

Pfeuty et al., 1974; Singh and Jasnow, 1975)
Cubic anisotropy, 350
Cutoff, smooth, 535-541

Dimension and fluctuation, 96-100
Dimensional analysis, 109-112
Dipole interaction, 415
Displacive phase transition (Shirane and Axe, 1971)
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Dynamic exponent (z), 453
in van. Hove theory, 446
in TDGL, 468, 470, 471, 486
in Heisenberg ferromagnet, 493

Dynamic scaling, 458-461

Eight-vertex model, 270 (Kadanoff and Wegner, 1971)
Elastic effect on critical behavior, 417 (Bergman and

Halperin, 1975)
Electrons in random potential, 411-413
Equation of state, 331, 332
e Expansion of critical exponents, 309-314

table of exponents, 355
Wilson's prescription for the enlargement of

critical regions, 309-314
1/n Expansion of critical exponents, 301-308

table, 358 (Bray, 1974; Ferrell and Scalapino, 1972;
Wilson, 1973)

Field-theory approach to RG (Gellman and Low, 1954;
DiCastro, 1974)

Fixed points, dynamic RG
ferromagnetic, 493
TDGL, 470, 481-486

Fixed points, static RG, 125, 135, 160
Gaussian, 164-167
high temperature, 167
low temperature 168
O(e) , 202
2-dimensional Ising model, 264, 266

Fluctuation-dissipation theorem, 441, 457, 510
Fokker - Planck equation, 429
Free energy, 52

Gaussian approximation, 74-76, 81, 83, 87
scaling hypothesis, 110-113
transformation under the RG, 149-157

Gauge field, 418
Gaussian distribution, 73
Ginzburg criterion, 94, 101
Ginzburg-Landau model, 45, 67, 71
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Gradient expansion, 199, 212
Graphs, dynamics, 501-527

multi-tree, 517-520
rules, 501, 505, 521, 524
tree, 501-503

Graphs, statics, 284-298
external and internal lines, 292
free energy, 284
linked cluster theorem, 291
rules, 288-290, 328
self energy, 296
( a > * 0, 324
with impurity interaction, 390-398

Gravity, 417

Heat conduction and critical dynamics, 472-487

Impurities, 359-400
difference between annealed and quenched, 361-369
free energy, 365
nonmagnetic, 370
random magnetic field, 286
random tensor field, 385
RG, 370-375
role of a, 379-381
stability of fixed points, criteria, 382

Irrelevant parameter, 179

Kadanoff transformation, 62-65, 121, 244-260
Kinetic equations, 423, 430
Kinks, 98-100
Kondo problem (Wilson, 1975}

Lagrangian formulation of TDGL (DeDominicis, 1975;
DeDominicis et al., 1975}

Landau theory, 78-82
Liquid crystal (DeGennes, 1974; McMillan, 1972,1973)
Liquid-gas critical behavior, 2-4, 352
Long-range interaction (Fisher, Ma and Nickel, 1972;

Sak, 1973; Suzuki, 1973}
produced by sharp cutoff, 215
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Long range order, lack of
for d £2, 96
random magnetic field, 386

Magnetic susceptibility, see susceptibility
Magnetization, 11, 26-29, 35-37, 52

Gaussian approximation, 78-80, 87, 96
RG, 147, 148
scaling, 111, 112

Marginal parameter, 179
Mean-field theory, 35-39
Mode, 18, 93, 101
Mode-mode coupling, 428

ferromagnet, 489,490
Models, sequence of, 40-44
Multicritical points (Griffiths and Wheeler, 1970; Nelson,

Fisher and Kosterlitz, 1974)

Noise, 427
Normal coordinates, 75

Order parameter, 4, 30, 31, 33
local, 16

Parameter space, 121, 159, 261
dynamics, 452
impurity, 372-374

Partition function, 50
Percolation problem (Harris et al., 1975)
Perturbation expansion, dynamics, 498-527

see also graphs, dynamics
Perturbation expansion, statics, 277-358

see also graphs, statics
divergence of, 298
Ginz burg-Landau model, 280
RG, 171, 339-346

Power laws, 11, 32
Probability distribution, 50-57

for block spins, 59
in Ginzburg-Landau form, 68
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Random walk
graph representation, 405
sell-attracting, 410
self-avoiding, 400

Reduction hypothesis (operator product expansion,
Kadanoff, 1969; Wilson, 1969)

Redundant parameter, 351
Relaxation time, 9, 422, 432, 444
R e le vant pa ramete r, 179
Renormalization group (RG), dynamics, 450-463

defined, 452, 453
ferromagnet, 490-493
TDGL, 468, 478-480

Renormalization group, statics, 116-129, 160
alternative definitions, 129-133
discrete spins, 244-260
large n limit, 220
linear and nonlinear, 132
linearized, 136-139

near Gaussian fixed point, 169, 175, 176
near nontrivial fixed point to O(e) , 203

0(e), 188-201
formula, 195, 201

perturbation expansion, 339-346
see also Wilson's recursion formula
two dimensional models, 260-272

Response function, 440
nonlinear, 517
scaling form, 460, 461
transformation under RG, 454, 458

Scale dimension, 109
Scaling fields, 180

n-* «, 228, 229
Scaling hypothesis, 103-115
Scaling in fluid Dynamics |Barnblatt and Zel'dovich, 1972;

Martin, 1975; McLaughlin and Martin, 1975;
Nelkin, 1974,1975)

Scaling law, 108
Series expansion, Ising model (Sykes et al., 1972)
Slow transient, removal of, 313
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Spatial' resolution, 60
Specific heat, 15, 16

in Gaussian, approximation, 84-88
and scaling hypothesis, 110, 111
RG analysis, 156

Spin configuration, 16, 17
Surface phenomena {Mills, 1971; Lubensky and Rubin,

1975)
Susceptibility, 14, 21, 29, 52

Time-dependent Ginz burg-Landau model (TDGL), 465
with slow heat conduction, 472

Tricritical point (Riedel, 1972; Riedel and Wegner, 1972;
Stephen, Abrahams and Straley, 1975}

dynamics (Kawasaki and Gunton, 1972)

Universality, 33, 38, 161
in dynamics, 474-497

van Hove theory, 442

Wilson's recursion relation, 229-240
applied to n -» °° case, 240
formula, 235
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